重整化群改进规则黑洞的霍金辐射

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Roman A. Konoplya
{"title":"重整化群改进规则黑洞的霍金辐射","authors":"Roman A. Konoplya","doi":"10.1002/prop.202400002","DOIUrl":null,"url":null,"abstract":"<p>A renormalization group approach based on the idea that the primary contribution to the Schwarzschild-like black hole spacetime arises from the value of the gravitational coupling is considered. The latter depends on the distance from the origin and approaches its classical value in the far zone. However, at some stage, this approach introduces an arbitrariness in choosing an identification parameter. There are three approaches to the identification: the modified proper length (the Bonanno–Reuter metric), the Kretschmann scalar (the Hayward metric), and an iterative, and, in a sense, coordinate-independent procedure (Dymnikova solution). Using the Wentzel–Kramers–Brillouin method, gray-body factors are calculated for the Standard Model massless test fields and their corresponding energy emission rates. For all of these solutions, it is found that the intensity of Hawking radiation of massless fields is significantly suppressed by several or more orders once the quantum correction is taken into consideration. This indicates that the effect of suppression of the Hawking radiation may be appropriate to the quantum corrected black holes in asymptotically safe gravity in general and is independent on the particular choice of the identification parameter.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 1-2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hawking Radiation of Renormalization Group Improved Regular Black Holes\",\"authors\":\"Roman A. Konoplya\",\"doi\":\"10.1002/prop.202400002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A renormalization group approach based on the idea that the primary contribution to the Schwarzschild-like black hole spacetime arises from the value of the gravitational coupling is considered. The latter depends on the distance from the origin and approaches its classical value in the far zone. However, at some stage, this approach introduces an arbitrariness in choosing an identification parameter. There are three approaches to the identification: the modified proper length (the Bonanno–Reuter metric), the Kretschmann scalar (the Hayward metric), and an iterative, and, in a sense, coordinate-independent procedure (Dymnikova solution). Using the Wentzel–Kramers–Brillouin method, gray-body factors are calculated for the Standard Model massless test fields and their corresponding energy emission rates. For all of these solutions, it is found that the intensity of Hawking radiation of massless fields is significantly suppressed by several or more orders once the quantum correction is taken into consideration. This indicates that the effect of suppression of the Hawking radiation may be appropriate to the quantum corrected black holes in asymptotically safe gravity in general and is independent on the particular choice of the identification parameter.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"73 1-2\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400002\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400002","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于对类史瓦西黑洞时空的主要贡献来自引力耦合值的思想,考虑了一种重整化群方法。后者取决于与原点的距离,并在远区接近其经典值。然而,在某些阶段,这种方法在选择识别参数时引入了随意性。有三种识别方法:改进的固有长度(bonnon - reuter度量),Kretschmann标量(Hayward度量)和迭代,并且在某种意义上,与坐标无关的过程(Dymnikova解)。采用Wentzel-Kramers-Brillouin方法,计算了标准模型无质量试验场的灰体因子及其相应的能量发射率。对于所有这些解,我们发现,一旦考虑量子修正,无质量场的霍金辐射强度被显著地抑制了几个或更多阶。这表明对霍金辐射的抑制效应一般适用于在渐近安全重力下的量子修正黑洞,并且与识别参数的具体选择无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hawking Radiation of Renormalization Group Improved Regular Black Holes

A renormalization group approach based on the idea that the primary contribution to the Schwarzschild-like black hole spacetime arises from the value of the gravitational coupling is considered. The latter depends on the distance from the origin and approaches its classical value in the far zone. However, at some stage, this approach introduces an arbitrariness in choosing an identification parameter. There are three approaches to the identification: the modified proper length (the Bonanno–Reuter metric), the Kretschmann scalar (the Hayward metric), and an iterative, and, in a sense, coordinate-independent procedure (Dymnikova solution). Using the Wentzel–Kramers–Brillouin method, gray-body factors are calculated for the Standard Model massless test fields and their corresponding energy emission rates. For all of these solutions, it is found that the intensity of Hawking radiation of massless fields is significantly suppressed by several or more orders once the quantum correction is taken into consideration. This indicates that the effect of suppression of the Hawking radiation may be appropriate to the quantum corrected black holes in asymptotically safe gravity in general and is independent on the particular choice of the identification parameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信