{"title":"Biogeochemistry of Riverine Organic Matter Inputs to the Patagonian Fjords and Implications for Fjord Organic Carbon Budgets","authors":"Sebastien Bertrand","doi":"10.1029/2024JG008531","DOIUrl":null,"url":null,"abstract":"<p>Fjords are increasingly recognized as hotspots for organic carbon (OC) burial. The OC buried in fjords is of both marine and terrestrial origin, with a predominance of terrestrial OC in fjords worldwide. The proportions of marine and terrestrial OC in fjords are traditionally calculated using end-member modeling based on <i>δ</i><sup>13</sup>C and/or N/C. However, characterizing the terrestrial end-member remains a challenge, with authors inconsistently using measurements obtained on land plants, soils, and/or river sediments. Here, we analyzed the TOC, <i>δ</i><sup>13</sup>C, and N/C composition of soil samples, suspended river sediments, and bulk and grain-size fractions of river sediments from the main rivers discharging into the Patagonian fjords (44–48°S), to identify the processes that affect the biogeochemistry of the terrestrial organic matter reaching fjords via rivers. Radiocarbon measurements indicate that Patagonian rivers contain 0.18% petrogenic OC and variable concentrations of biospheric OC. Despite soil <i>δ</i><sup>13</sup>C significantly decreasing with precipitation, <i>δ</i><sup>13</sup>C in river sediments remains relatively stable around −27‰. In contrast, N/C in river sediments is highly variable, mostly due to a high contribution of petrogenic nitrogen in glacier-fed rivers. Furthermore, N/C varies significantly with sediment grain size, making it virtually impossible to define a fixed N/C value to represent the terrestrial end-member. By comparison, grain size has a limited influence on <i>δ</i><sup>13</sup>C. Overall, our results support the use of riverine <i>δ</i><sup>13</sup>C to define terrestrial OC in mixing models, regardless of the presence of glaciers in the watershed, and they suggest that the fraction of terrestrial OC buried in fjord sediments may have been underestimated.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008531","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008531","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biogeochemistry of Riverine Organic Matter Inputs to the Patagonian Fjords and Implications for Fjord Organic Carbon Budgets
Fjords are increasingly recognized as hotspots for organic carbon (OC) burial. The OC buried in fjords is of both marine and terrestrial origin, with a predominance of terrestrial OC in fjords worldwide. The proportions of marine and terrestrial OC in fjords are traditionally calculated using end-member modeling based on δ13C and/or N/C. However, characterizing the terrestrial end-member remains a challenge, with authors inconsistently using measurements obtained on land plants, soils, and/or river sediments. Here, we analyzed the TOC, δ13C, and N/C composition of soil samples, suspended river sediments, and bulk and grain-size fractions of river sediments from the main rivers discharging into the Patagonian fjords (44–48°S), to identify the processes that affect the biogeochemistry of the terrestrial organic matter reaching fjords via rivers. Radiocarbon measurements indicate that Patagonian rivers contain 0.18% petrogenic OC and variable concentrations of biospheric OC. Despite soil δ13C significantly decreasing with precipitation, δ13C in river sediments remains relatively stable around −27‰. In contrast, N/C in river sediments is highly variable, mostly due to a high contribution of petrogenic nitrogen in glacier-fed rivers. Furthermore, N/C varies significantly with sediment grain size, making it virtually impossible to define a fixed N/C value to represent the terrestrial end-member. By comparison, grain size has a limited influence on δ13C. Overall, our results support the use of riverine δ13C to define terrestrial OC in mixing models, regardless of the presence of glaciers in the watershed, and they suggest that the fraction of terrestrial OC buried in fjord sediments may have been underestimated.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology