基于表达的机器学习模型预测植物组织身份

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Sourabh Palande, Jeremy Arsenault, Patricia Basurto-Lozada, Andrew Bleich, Brianna N. I. Brown, Sophia F. Buysse, Noelle A. Connors, Sikta Das Adhikari, Kara C. Dobson, Francisco Xavier Guerra-Castillo, Maria F. Guerrero-Carrillo, Sophia Harlow, Héctor Herrera-Orozco, Asia T. Hightower, Paulo Izquierdo, MacKenzie Jacobs, Nicholas A. Johnson, Wendy Leuenberger, Alessandro Lopez-Hernandez, Alicia Luckie-Duque, Camila Martínez-Avila, Eddy J. Mendoza-Galindo, David Cruz Plancarte, Jenny M. Schuster, Harry Shomer, Sidney C. Sitar, Anne K. Steensma, Joanne Elise Thomson, Damián Villaseñor-Amador, Robin Waterman, Brandon M. Webster, Madison Whyte, Sofía Zorilla-Azcué, Beronda L. Montgomery, Aman Y. Husbands, Arjun Krishnan, Sarah Percival, Elizabeth Munch, Robert VanBuren, Daniel H. Chitwood, Alejandra Rougon-Cardoso
{"title":"基于表达的机器学习模型预测植物组织身份","authors":"Sourabh Palande,&nbsp;Jeremy Arsenault,&nbsp;Patricia Basurto-Lozada,&nbsp;Andrew Bleich,&nbsp;Brianna N. I. Brown,&nbsp;Sophia F. Buysse,&nbsp;Noelle A. Connors,&nbsp;Sikta Das Adhikari,&nbsp;Kara C. Dobson,&nbsp;Francisco Xavier Guerra-Castillo,&nbsp;Maria F. Guerrero-Carrillo,&nbsp;Sophia Harlow,&nbsp;Héctor Herrera-Orozco,&nbsp;Asia T. Hightower,&nbsp;Paulo Izquierdo,&nbsp;MacKenzie Jacobs,&nbsp;Nicholas A. Johnson,&nbsp;Wendy Leuenberger,&nbsp;Alessandro Lopez-Hernandez,&nbsp;Alicia Luckie-Duque,&nbsp;Camila Martínez-Avila,&nbsp;Eddy J. Mendoza-Galindo,&nbsp;David Cruz Plancarte,&nbsp;Jenny M. Schuster,&nbsp;Harry Shomer,&nbsp;Sidney C. Sitar,&nbsp;Anne K. Steensma,&nbsp;Joanne Elise Thomson,&nbsp;Damián Villaseñor-Amador,&nbsp;Robin Waterman,&nbsp;Brandon M. Webster,&nbsp;Madison Whyte,&nbsp;Sofía Zorilla-Azcué,&nbsp;Beronda L. Montgomery,&nbsp;Aman Y. Husbands,&nbsp;Arjun Krishnan,&nbsp;Sarah Percival,&nbsp;Elizabeth Munch,&nbsp;Robert VanBuren,&nbsp;Daniel H. Chitwood,&nbsp;Alejandra Rougon-Cardoso","doi":"10.1002/aps3.11621","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>The selection of <i>Arabidopsis</i> as a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural- or ecological-based model species were rejected, in favor of building knowledge in a species that would facilitate genome-enabled research.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Here, we examine the ability of models based on <i>Arabidopsis</i> gene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested on <i>Arabidopsis</i> data achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained on <i>Arabidopsis</i> data, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance from <i>Arabidopsis</i>. <i>k</i>-nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>Our data-driven results highlight that the assertion that knowledge from <i>Arabidopsis</i> is translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis on <i>Arabidopsis</i> and prioritize plant diversity.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11621","citationCount":"0","resultStr":"{\"title\":\"Expression-based machine learning models for predicting plant tissue identity\",\"authors\":\"Sourabh Palande,&nbsp;Jeremy Arsenault,&nbsp;Patricia Basurto-Lozada,&nbsp;Andrew Bleich,&nbsp;Brianna N. I. Brown,&nbsp;Sophia F. Buysse,&nbsp;Noelle A. Connors,&nbsp;Sikta Das Adhikari,&nbsp;Kara C. Dobson,&nbsp;Francisco Xavier Guerra-Castillo,&nbsp;Maria F. Guerrero-Carrillo,&nbsp;Sophia Harlow,&nbsp;Héctor Herrera-Orozco,&nbsp;Asia T. Hightower,&nbsp;Paulo Izquierdo,&nbsp;MacKenzie Jacobs,&nbsp;Nicholas A. Johnson,&nbsp;Wendy Leuenberger,&nbsp;Alessandro Lopez-Hernandez,&nbsp;Alicia Luckie-Duque,&nbsp;Camila Martínez-Avila,&nbsp;Eddy J. Mendoza-Galindo,&nbsp;David Cruz Plancarte,&nbsp;Jenny M. Schuster,&nbsp;Harry Shomer,&nbsp;Sidney C. Sitar,&nbsp;Anne K. Steensma,&nbsp;Joanne Elise Thomson,&nbsp;Damián Villaseñor-Amador,&nbsp;Robin Waterman,&nbsp;Brandon M. Webster,&nbsp;Madison Whyte,&nbsp;Sofía Zorilla-Azcué,&nbsp;Beronda L. Montgomery,&nbsp;Aman Y. Husbands,&nbsp;Arjun Krishnan,&nbsp;Sarah Percival,&nbsp;Elizabeth Munch,&nbsp;Robert VanBuren,&nbsp;Daniel H. Chitwood,&nbsp;Alejandra Rougon-Cardoso\",\"doi\":\"10.1002/aps3.11621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>The selection of <i>Arabidopsis</i> as a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural- or ecological-based model species were rejected, in favor of building knowledge in a species that would facilitate genome-enabled research.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Here, we examine the ability of models based on <i>Arabidopsis</i> gene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested on <i>Arabidopsis</i> data achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained on <i>Arabidopsis</i> data, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance from <i>Arabidopsis</i>. <i>k</i>-nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Discussion</h3>\\n \\n <p>Our data-driven results highlight that the assertion that knowledge from <i>Arabidopsis</i> is translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis on <i>Arabidopsis</i> and prioritize plant diversity.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11621\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11621\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11621","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

拟南芥作为模式生物的选择对基因组科学的发展起着至关重要的作用。选择以农业或生态为基础的模式物种的竞争框架被拒绝,而支持在物种中建立知识,以促进基因组研究。方法基于拟南芥基因表达数据,研究拟南芥基因表达模型在其他开花植物中预测组织特性的能力。比较不同的机器学习算法,在拟南芥数据上训练和测试的模型获得了接近完美的精度和召回值,而当使用拟南芥数据训练的模型预测开花植物的组织身份时,精度值在0.69至0.74之间,召回率在0.54至0.64之间。结果对拟南芥地下组织身份的预测比其他组织类型更准确,预测组织身份的能力与与拟南芥的系统发育距离无关。k近邻算法是最成功的算法,这表明基因表达特征,而不是标记基因,在建立植物组织和细胞类型预测模型方面更有价值。我们的数据驱动的结果强调,断言从拟南芥的知识可以翻译到其他植物并不总是正确的。考虑到目前丰富的测序数据,我们应该重新评估对拟南芥的科学重点,优先考虑植物多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Expression-based machine learning models for predicting plant tissue identity

Expression-based machine learning models for predicting plant tissue identity

Premise

The selection of Arabidopsis as a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural- or ecological-based model species were rejected, in favor of building knowledge in a species that would facilitate genome-enabled research.

Methods

Here, we examine the ability of models based on Arabidopsis gene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested on Arabidopsis data achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained on Arabidopsis data, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64.

Results

The identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance from Arabidopsis. k-nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants.

Discussion

Our data-driven results highlight that the assertion that knowledge from Arabidopsis is translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis on Arabidopsis and prioritize plant diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
50
审稿时长
12 weeks
期刊介绍: Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences. APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信