无酶链置换反应同时检测大肠杆菌和肠炎沙门氏菌双靶点

Shixin Yan, Yuling Xiao, Ruijuan Shen, Jiazhe Cheng, Yuling Zhang, Nan Wu, Jinhao Chen, Jie Chen, Peng Zhang, Jia Geng
{"title":"无酶链置换反应同时检测大肠杆菌和肠炎沙门氏菌双靶点","authors":"Shixin Yan,&nbsp;Yuling Xiao,&nbsp;Ruijuan Shen,&nbsp;Jiazhe Cheng,&nbsp;Yuling Zhang,&nbsp;Nan Wu,&nbsp;Jinhao Chen,&nbsp;Jie Chen,&nbsp;Peng Zhang,&nbsp;Jia Geng","doi":"10.1002/mba2.70002","DOIUrl":null,"url":null,"abstract":"<p><i>Escherichia coli</i> (<i>E. coli</i>) and <i>Salmonella enteritidis</i> (<i>S. enteritidis</i>) are common food-borne pathogens, which pose a very significant threat to the healthcare environment. The rapid detection of relevant bacteria can help control their rapid spread, while the traditional bacterial culture detection method is time-consuming and not conducive to the rapid detection of pathogens. Recently, new detection methods for related pathogenic bacteria have emerged, but these methods are relatively complex, and few methods can detect two bacteria at the same time. Therefore, there is an urgent need to develop multi-target, convenient, and fast pathogen detection methods. This method successfully constructed an enzyme-free fluorescent biosensor based on the adapter-mediated strand displacement reaction to detect <i>E. coli</i> ATCC25922 and <i>S. enteritidis</i> ATCC13076. This method had an ultrasensitive detection limit of 0.7 CFU/mL and 0.61 CFU/mL within 20 min, with a broad linear range of 34–10<sup>5</sup> CFU/mL of <i>E. coli</i> and 17–10<sup>6</sup> CFU/mL of <i>S. enteritidis</i>, respectively. Importantly, the spiked recovery of the three clinical fluid samples performed well, which proved that this method had the potential to detect <i>E. coli</i> and <i>S. enteritidis</i> in clinical samples. The sensor constructed by this method can detect dual targets at the same time, increasing the possibility of large-scale clinical use.</p>","PeriodicalId":100901,"journal":{"name":"MedComm – Biomaterials and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70002","citationCount":"0","resultStr":"{\"title\":\"Simultaneous detection of dual targets Escherichia coli and Salmonella enteritidis using enzyme-free strand displacement reaction\",\"authors\":\"Shixin Yan,&nbsp;Yuling Xiao,&nbsp;Ruijuan Shen,&nbsp;Jiazhe Cheng,&nbsp;Yuling Zhang,&nbsp;Nan Wu,&nbsp;Jinhao Chen,&nbsp;Jie Chen,&nbsp;Peng Zhang,&nbsp;Jia Geng\",\"doi\":\"10.1002/mba2.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Escherichia coli</i> (<i>E. coli</i>) and <i>Salmonella enteritidis</i> (<i>S. enteritidis</i>) are common food-borne pathogens, which pose a very significant threat to the healthcare environment. The rapid detection of relevant bacteria can help control their rapid spread, while the traditional bacterial culture detection method is time-consuming and not conducive to the rapid detection of pathogens. Recently, new detection methods for related pathogenic bacteria have emerged, but these methods are relatively complex, and few methods can detect two bacteria at the same time. Therefore, there is an urgent need to develop multi-target, convenient, and fast pathogen detection methods. This method successfully constructed an enzyme-free fluorescent biosensor based on the adapter-mediated strand displacement reaction to detect <i>E. coli</i> ATCC25922 and <i>S. enteritidis</i> ATCC13076. This method had an ultrasensitive detection limit of 0.7 CFU/mL and 0.61 CFU/mL within 20 min, with a broad linear range of 34–10<sup>5</sup> CFU/mL of <i>E. coli</i> and 17–10<sup>6</sup> CFU/mL of <i>S. enteritidis</i>, respectively. Importantly, the spiked recovery of the three clinical fluid samples performed well, which proved that this method had the potential to detect <i>E. coli</i> and <i>S. enteritidis</i> in clinical samples. The sensor constructed by this method can detect dual targets at the same time, increasing the possibility of large-scale clinical use.</p>\",\"PeriodicalId\":100901,\"journal\":{\"name\":\"MedComm – Biomaterials and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm – Biomaterials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Biomaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大肠杆菌(E. coli)和肠炎沙门氏菌(S. enteritidis)是常见的食源性致病菌,对卫生保健环境构成非常重大的威胁。对相关细菌的快速检测有助于控制其快速传播,而传统的细菌培养检测方法耗时长,不利于病原体的快速检测。近年来,相关病原菌的新检测方法不断涌现,但这些方法相对复杂,很少有方法能同时检测两种细菌。因此,迫切需要开发多靶点、方便、快速的病原菌检测方法。本方法成功构建了基于适配器介导的链位移反应的无酶荧光生物传感器,用于检测大肠杆菌ATCC25922和肠炎沙门氏菌ATCC13076。该方法在20 min内的超灵敏检出限分别为0.7 CFU/mL和0.61 CFU/mL,对大肠杆菌和肠炎沙门氏菌的线性范围分别为34 ~ 105 CFU/mL和17 ~ 106 CFU/mL。重要的是,三种临床液体样品的加标回收率良好,证明该方法具有检测临床样品中大肠杆菌和肠炎沙门氏菌的潜力。该方法构建的传感器可以同时检测双靶标,增加了大规模临床应用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous detection of dual targets Escherichia coli and Salmonella enteritidis using enzyme-free strand displacement reaction

Simultaneous detection of dual targets Escherichia coli and Salmonella enteritidis using enzyme-free strand displacement reaction

Escherichia coli (E. coli) and Salmonella enteritidis (S. enteritidis) are common food-borne pathogens, which pose a very significant threat to the healthcare environment. The rapid detection of relevant bacteria can help control their rapid spread, while the traditional bacterial culture detection method is time-consuming and not conducive to the rapid detection of pathogens. Recently, new detection methods for related pathogenic bacteria have emerged, but these methods are relatively complex, and few methods can detect two bacteria at the same time. Therefore, there is an urgent need to develop multi-target, convenient, and fast pathogen detection methods. This method successfully constructed an enzyme-free fluorescent biosensor based on the adapter-mediated strand displacement reaction to detect E. coli ATCC25922 and S. enteritidis ATCC13076. This method had an ultrasensitive detection limit of 0.7 CFU/mL and 0.61 CFU/mL within 20 min, with a broad linear range of 34–105 CFU/mL of E. coli and 17–106 CFU/mL of S. enteritidis, respectively. Importantly, the spiked recovery of the three clinical fluid samples performed well, which proved that this method had the potential to detect E. coli and S. enteritidis in clinical samples. The sensor constructed by this method can detect dual targets at the same time, increasing the possibility of large-scale clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信