{"title":"C P 2$ \\mathbb {C}P^2$中的局部平面简单球","authors":"Anthony Conway, Patrick Orson","doi":"10.1112/blms.13188","DOIUrl":null,"url":null,"abstract":"<p>The fundamental group of the complement of a locally flat surface in a 4-manifold is called the knot group of the surface. In this article, we prove that two locally flat 2-spheres in <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}P^2$</annotation>\n </semantics></math> with knot group <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathbb {Z}_2$</annotation>\n </semantics></math> are ambiently isotopic if they are homologous. This combines with work of Tristram and Lee–Wilczyński, as well as the classification of <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathbb {Z}$</annotation>\n </semantics></math>-surfaces, to complete a proof of the statement: a class <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>∈</mo>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>≅</mo>\n <mi>Z</mi>\n </mrow>\n <annotation>$d \\in H_2(\\mathbb {C}P^2) \\cong \\mathbb {Z}$</annotation>\n </semantics></math> is represented by a locally flat sphere with abelian knot group if and only if <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>d</mi>\n <mo>|</mo>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$|d| \\in \\lbrace 0,1,2\\rbrace$</annotation>\n </semantics></math>; and this sphere is unique up to ambient isotopy.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"150-163"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally flat simple spheres in \\n \\n \\n C\\n \\n P\\n 2\\n \\n \\n $\\\\mathbb {C}P^2$\",\"authors\":\"Anthony Conway, Patrick Orson\",\"doi\":\"10.1112/blms.13188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fundamental group of the complement of a locally flat surface in a 4-manifold is called the knot group of the surface. In this article, we prove that two locally flat 2-spheres in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}P^2$</annotation>\\n </semantics></math> with knot group <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathbb {Z}_2$</annotation>\\n </semantics></math> are ambiently isotopic if they are homologous. This combines with work of Tristram and Lee–Wilczyński, as well as the classification of <span></span><math>\\n <semantics>\\n <mi>Z</mi>\\n <annotation>$\\\\mathbb {Z}$</annotation>\\n </semantics></math>-surfaces, to complete a proof of the statement: a class <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>≅</mo>\\n <mi>Z</mi>\\n </mrow>\\n <annotation>$d \\\\in H_2(\\\\mathbb {C}P^2) \\\\cong \\\\mathbb {Z}$</annotation>\\n </semantics></math> is represented by a locally flat sphere with abelian knot group if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>d</mi>\\n <mo>|</mo>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$|d| \\\\in \\\\lbrace 0,1,2\\\\rbrace$</annotation>\\n </semantics></math>; and this sphere is unique up to ambient isotopy.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"150-163\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13188\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13188","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Locally flat simple spheres in
C
P
2
$\mathbb {C}P^2$
The fundamental group of the complement of a locally flat surface in a 4-manifold is called the knot group of the surface. In this article, we prove that two locally flat 2-spheres in with knot group are ambiently isotopic if they are homologous. This combines with work of Tristram and Lee–Wilczyński, as well as the classification of -surfaces, to complete a proof of the statement: a class is represented by a locally flat sphere with abelian knot group if and only if ; and this sphere is unique up to ambient isotopy.