利用景观演化模型评价遗传结构不连续面在荒地侵蚀过程中的作用

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Selçuk Aksay, Jeroen M. Schoorl, Antonie Veldkamp
{"title":"利用景观演化模型评价遗传结构不连续面在荒地侵蚀过程中的作用","authors":"Selçuk Aksay,&nbsp;Jeroen M. Schoorl,&nbsp;Antonie Veldkamp","doi":"10.1002/esp.6031","DOIUrl":null,"url":null,"abstract":"<p>Catchment-wide erosion and sedimentation behaviour is influenced by variety of controls. One of these controls is erodibility, which may be determined by the lithological properties (e.g. texture, porosity) or the (density of) structural discontinuities (e.g. faults, fractures). In this study, the potential role of different erodibility of lithology and faults in spatio-temporal erosion and sedimentation behaviour was evaluated using the landscape evolution model, Landscape Process Modelling at Multi-dimensions and Scales (LAPSUS). The study area, Kula Badlands (western Turkey), is known for dense badland gully networks, incised into fine-grained sediments in one of the tributaries of the Gediz River, the Geren catchment. An earlier field-based study demonstrated the fault-controlled net erosion and consequent sedimentation in these badlands. Here, we test the role of lithology and faults in landscape development with scenario-based modelling. A reconstructed PalaeoDEM, representing a 30-ka-old landscape, was used as an input. Scenario simulations were conducted with lithology- and fault-related erodibility and sedimentability factors. Simulation results demonstrate a significant difference in spatial erodibility and sedimentability and catchment erosion and sedimentation behaviour. Incorporating higher erodibility factors for fault zones caused not only a considerable amount of within-catchment erosion in fault-determined erosion zones, but also a decrease in overall catchment sediment export. In addition, high constant sedimentability lowers the sediment export considerably whilst slightly increasing total erosion rates. These outcomes indicate that fault zones with higher erodibility can increase accommodation spaces, producing temporary (re)sedimentation locations, which decrease overall sediment delivery from its catchment on the long run. The model simulations suggest that fault-related higher erodibility and sedimentability can be important factors in controlling landscape dynamics at the local and catchment scale.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.6031","citationCount":"0","resultStr":"{\"title\":\"Evaluating the role of inherited structural discontinuities in badland erosional processes with landscape evolution modelling\",\"authors\":\"Selçuk Aksay,&nbsp;Jeroen M. Schoorl,&nbsp;Antonie Veldkamp\",\"doi\":\"10.1002/esp.6031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Catchment-wide erosion and sedimentation behaviour is influenced by variety of controls. One of these controls is erodibility, which may be determined by the lithological properties (e.g. texture, porosity) or the (density of) structural discontinuities (e.g. faults, fractures). In this study, the potential role of different erodibility of lithology and faults in spatio-temporal erosion and sedimentation behaviour was evaluated using the landscape evolution model, Landscape Process Modelling at Multi-dimensions and Scales (LAPSUS). The study area, Kula Badlands (western Turkey), is known for dense badland gully networks, incised into fine-grained sediments in one of the tributaries of the Gediz River, the Geren catchment. An earlier field-based study demonstrated the fault-controlled net erosion and consequent sedimentation in these badlands. Here, we test the role of lithology and faults in landscape development with scenario-based modelling. A reconstructed PalaeoDEM, representing a 30-ka-old landscape, was used as an input. Scenario simulations were conducted with lithology- and fault-related erodibility and sedimentability factors. Simulation results demonstrate a significant difference in spatial erodibility and sedimentability and catchment erosion and sedimentation behaviour. Incorporating higher erodibility factors for fault zones caused not only a considerable amount of within-catchment erosion in fault-determined erosion zones, but also a decrease in overall catchment sediment export. In addition, high constant sedimentability lowers the sediment export considerably whilst slightly increasing total erosion rates. These outcomes indicate that fault zones with higher erodibility can increase accommodation spaces, producing temporary (re)sedimentation locations, which decrease overall sediment delivery from its catchment on the long run. The model simulations suggest that fault-related higher erodibility and sedimentability can be important factors in controlling landscape dynamics at the local and catchment scale.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.6031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.6031\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6031","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

整个流域的侵蚀和沉积行为受到各种控制因素的影响。其中一个控制因素是可蚀性,这可能由岩性性质(如纹理、孔隙度)或结构不连续(如断层、裂缝)的(密度)决定。本研究利用景观演化模型——景观过程模型(landscape Process modeling at Multi-dimensions and Scales, LAPSUS)评估了不同岩性和断层的可蚀性对时空侵蚀和沉积行为的潜在影响。该研究区位于土耳其西部的库拉荒地(Kula Badlands),以密集的荒地沟壑网络而闻名,这些沟壑被切成格迪兹河(Gediz River)一条支流的细粒沉积物,即格伦集水区。早期的实地研究表明,这些荒地存在断层控制的净侵蚀和随之而来的沉积。在这里,我们通过基于场景的建模来测试岩性和断层在景观发展中的作用。一个重建的paleodem,代表了一个30 ka的古老景观,被用作输入。利用与岩性和断层相关的可蚀性和沉积性因素进行了情景模拟。模拟结果表明,空间可蚀性和沉积性以及流域侵蚀和沉积行为存在显著差异。在断裂带引入较高的可蚀性因子,不仅会导致断层确定的侵蚀带的流域内大量侵蚀,而且还会减少流域的总体沉积物输出。此外,较高的恒定沉积性大大降低了沉积物出口,同时略微增加了总侵蚀速率。这些结果表明,具有较高可蚀性的断裂带可以增加容纳空间,产生临时(再)沉积位置,从长远来看,这减少了其流域的总体沉积物输送。模式模拟表明,断层相关的高可蚀性和沉积性可能是控制局部和流域景观动态的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluating the role of inherited structural discontinuities in badland erosional processes with landscape evolution modelling

Evaluating the role of inherited structural discontinuities in badland erosional processes with landscape evolution modelling

Catchment-wide erosion and sedimentation behaviour is influenced by variety of controls. One of these controls is erodibility, which may be determined by the lithological properties (e.g. texture, porosity) or the (density of) structural discontinuities (e.g. faults, fractures). In this study, the potential role of different erodibility of lithology and faults in spatio-temporal erosion and sedimentation behaviour was evaluated using the landscape evolution model, Landscape Process Modelling at Multi-dimensions and Scales (LAPSUS). The study area, Kula Badlands (western Turkey), is known for dense badland gully networks, incised into fine-grained sediments in one of the tributaries of the Gediz River, the Geren catchment. An earlier field-based study demonstrated the fault-controlled net erosion and consequent sedimentation in these badlands. Here, we test the role of lithology and faults in landscape development with scenario-based modelling. A reconstructed PalaeoDEM, representing a 30-ka-old landscape, was used as an input. Scenario simulations were conducted with lithology- and fault-related erodibility and sedimentability factors. Simulation results demonstrate a significant difference in spatial erodibility and sedimentability and catchment erosion and sedimentation behaviour. Incorporating higher erodibility factors for fault zones caused not only a considerable amount of within-catchment erosion in fault-determined erosion zones, but also a decrease in overall catchment sediment export. In addition, high constant sedimentability lowers the sediment export considerably whilst slightly increasing total erosion rates. These outcomes indicate that fault zones with higher erodibility can increase accommodation spaces, producing temporary (re)sedimentation locations, which decrease overall sediment delivery from its catchment on the long run. The model simulations suggest that fault-related higher erodibility and sedimentability can be important factors in controlling landscape dynamics at the local and catchment scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信