Pan Zhao, Linhu Xiang, Yunsheng Gou, Xiangyu Yang, Shiying Tang, Chunlong Yuan, Bin wang, Hua Yu
{"title":"高效稳定倒置钙钛矿太阳能电池的羧甲基离子液体工程","authors":"Pan Zhao, Linhu Xiang, Yunsheng Gou, Xiangyu Yang, Shiying Tang, Chunlong Yuan, Bin wang, Hua Yu","doi":"10.1002/solr.202400781","DOIUrl":null,"url":null,"abstract":"<p>Perovskite solar cells (PSCs) have garnered significant attention due to their tunable bandgap, superior charge carrier properties, and easy fabrication processes, making them highly efficient energy conversion devices. Despite these advantages, nonradiative recombination due to defects in the perovskite layer continues to limit performance. This study addresses this issue by introducing 1-CarboxyMethyl-3-MethylImidazolium chloride (ImAcCl) into precursor solution to enhance film quality and suppress defect-induced recombination. The carboxylate groups (CO) and hydrogen donors (N<span></span>H) in ImAcCl form coordination and hydrogen bonds, helping to reduce defect density of the perovskite film. Additive ImAcCl improves crystallinity, reduces surface roughness, and enhances charge carrier transport, leading to higher photovoltaic performance. With the ImAcCl additive, the power conversion efficiency and short-circuit current of PSCs significantly improve by 23.92% and 25.35 mA cm<sup>−2</sup>, with a notable reduction in nonradiative recombination losses. This study highlights the significant potential of ImAcCl as an effective additive for defect passivation in PSCs, offering a promising pathway toward further efficiency improvements in next-generation solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxymethyl-Based Ionic Liquid Engineering for Efficient and Stable Inverted Perovskite Solar Cells\",\"authors\":\"Pan Zhao, Linhu Xiang, Yunsheng Gou, Xiangyu Yang, Shiying Tang, Chunlong Yuan, Bin wang, Hua Yu\",\"doi\":\"10.1002/solr.202400781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perovskite solar cells (PSCs) have garnered significant attention due to their tunable bandgap, superior charge carrier properties, and easy fabrication processes, making them highly efficient energy conversion devices. Despite these advantages, nonradiative recombination due to defects in the perovskite layer continues to limit performance. This study addresses this issue by introducing 1-CarboxyMethyl-3-MethylImidazolium chloride (ImAcCl) into precursor solution to enhance film quality and suppress defect-induced recombination. The carboxylate groups (CO) and hydrogen donors (N<span></span>H) in ImAcCl form coordination and hydrogen bonds, helping to reduce defect density of the perovskite film. Additive ImAcCl improves crystallinity, reduces surface roughness, and enhances charge carrier transport, leading to higher photovoltaic performance. With the ImAcCl additive, the power conversion efficiency and short-circuit current of PSCs significantly improve by 23.92% and 25.35 mA cm<sup>−2</sup>, with a notable reduction in nonradiative recombination losses. This study highlights the significant potential of ImAcCl as an effective additive for defect passivation in PSCs, offering a promising pathway toward further efficiency improvements in next-generation solar cells.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400781\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400781","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
钙钛矿太阳能电池(PSCs)由于其可调的带隙、优越的电荷载流子特性和易于制造的工艺,使其成为高效的能量转换器件,受到了广泛的关注。尽管有这些优点,但由于钙钛矿层中的缺陷导致的非辐射复合仍然限制了性能。本研究通过在前驱体溶液中引入1-羧基甲基-3-甲基咪唑氯(ImAcCl)来提高薄膜质量并抑制缺陷引起的重组,解决了这一问题。ImAcCl中的羧酸基(C O)和给氢基(N H)形成配位键和氢键,有助于降低钙钛矿膜的缺陷密度。添加剂ImAcCl提高了结晶度,降低了表面粗糙度,增强了载流子输运,从而提高了光伏性能。添加ImAcCl后,PSCs的功率转换效率和短路电流分别提高了23.92%和25.35 mA cm−2,非辐射复合损耗显著降低。这项研究强调了ImAcCl作为一种有效的PSCs缺陷钝化添加剂的巨大潜力,为进一步提高下一代太阳能电池的效率提供了一条有希望的途径。
Carboxymethyl-Based Ionic Liquid Engineering for Efficient and Stable Inverted Perovskite Solar Cells
Perovskite solar cells (PSCs) have garnered significant attention due to their tunable bandgap, superior charge carrier properties, and easy fabrication processes, making them highly efficient energy conversion devices. Despite these advantages, nonradiative recombination due to defects in the perovskite layer continues to limit performance. This study addresses this issue by introducing 1-CarboxyMethyl-3-MethylImidazolium chloride (ImAcCl) into precursor solution to enhance film quality and suppress defect-induced recombination. The carboxylate groups (CO) and hydrogen donors (NH) in ImAcCl form coordination and hydrogen bonds, helping to reduce defect density of the perovskite film. Additive ImAcCl improves crystallinity, reduces surface roughness, and enhances charge carrier transport, leading to higher photovoltaic performance. With the ImAcCl additive, the power conversion efficiency and short-circuit current of PSCs significantly improve by 23.92% and 25.35 mA cm−2, with a notable reduction in nonradiative recombination losses. This study highlights the significant potential of ImAcCl as an effective additive for defect passivation in PSCs, offering a promising pathway toward further efficiency improvements in next-generation solar cells.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.