{"title":"一种轮系交错距离的性质","authors":"François Petit, Pierre Schapira, Lukas Waas","doi":"10.1112/blms.13187","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a real analytic manifold endowed with a distance satisfying suitable properties and let <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\bf k}$</annotation>\n </semantics></math> be a field. In [Petit and Schapira, Selecta Math. <b>29</b> (2023), no. 70, DOI 10.1007/s00029-023-00875-6], the authors construct a pseudo-distance on the derived category of sheaves of <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\bf k}$</annotation>\n </semantics></math>-modules on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, generalizing a previous construction of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. <b>2</b> (2018), 83–113]. We prove here that if the distance between two constructible sheaves with compact support (or more generally, constructible sheaves up to infinity) on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is zero, then these two sheaves are isomorphic, answering a question of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. <b>2</b> (2018), 83–113]. We also prove that our results imply a similar statement for finitely presentable persistence modules due to Lesnick.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"137-149"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13187","citationCount":"0","resultStr":"{\"title\":\"A property of the interleaving distance for sheaves\",\"authors\":\"François Petit, Pierre Schapira, Lukas Waas\",\"doi\":\"10.1112/blms.13187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> be a real analytic manifold endowed with a distance satisfying suitable properties and let <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>${\\\\bf k}$</annotation>\\n </semantics></math> be a field. In [Petit and Schapira, Selecta Math. <b>29</b> (2023), no. 70, DOI 10.1007/s00029-023-00875-6], the authors construct a pseudo-distance on the derived category of sheaves of <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>${\\\\bf k}$</annotation>\\n </semantics></math>-modules on <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, generalizing a previous construction of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. <b>2</b> (2018), 83–113]. We prove here that if the distance between two constructible sheaves with compact support (or more generally, constructible sheaves up to infinity) on <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is zero, then these two sheaves are isomorphic, answering a question of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. <b>2</b> (2018), 83–113]. We also prove that our results imply a similar statement for finitely presentable persistence modules due to Lesnick.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"137-149\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13187\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13187\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13187","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设X$ X$是具有距离满足适当性质的实解析流形,设k ${\bf k}$是一个域。见[Petit and Schapira],《数学选集》,29(2023),第2期。作者在X$ X$上的k ${\bf k}$ -模的派生范畴上构造了一个伪距离,推广了先前的构造[Kashiwara和Schapira, J. Appl.]。第一版。数学。Topol. 2(2018), 83-113。本文证明了X$ X$上具有紧支撑的两个可构造轴(或更一般地说,可构造轴直至无穷大)之间的距离为零,则这两个可构造轴是同构的,从而回答了Kashiwara和Schapira, J. appll的问题。第一版。数学。Topol. 2(2018), 83-113。我们还证明,由于Lesnick的存在,我们的结果暗示了一个类似的陈述。
A property of the interleaving distance for sheaves
Let be a real analytic manifold endowed with a distance satisfying suitable properties and let be a field. In [Petit and Schapira, Selecta Math. 29 (2023), no. 70, DOI 10.1007/s00029-023-00875-6], the authors construct a pseudo-distance on the derived category of sheaves of -modules on , generalizing a previous construction of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. 2 (2018), 83–113]. We prove here that if the distance between two constructible sheaves with compact support (or more generally, constructible sheaves up to infinity) on is zero, then these two sheaves are isomorphic, answering a question of [Kashiwara and Schapira, J. Appl. Comput. Math. Topol. 2 (2018), 83–113]. We also prove that our results imply a similar statement for finitely presentable persistence modules due to Lesnick.