用人工智能改变皮肤病理学:解决偏差、提高可解释性并塑造未来诊断方法

Diala Ra'Ed Kamal Kakish, Jehad Feras AlSamhori, Andy Noel Ramirez Fajardo, Lana N. Qaqish, Layan Ahmed Jaber, Rawan Abujudeh, Mohammad Hathal Mahmoud Al-Zuriqat, Amina Yahya Mohammed, Abdulqadir J. Nashwan
{"title":"用人工智能改变皮肤病理学:解决偏差、提高可解释性并塑造未来诊断方法","authors":"Diala Ra'Ed Kamal Kakish,&nbsp;Jehad Feras AlSamhori,&nbsp;Andy Noel Ramirez Fajardo,&nbsp;Lana N. Qaqish,&nbsp;Layan Ahmed Jaber,&nbsp;Rawan Abujudeh,&nbsp;Mohammad Hathal Mahmoud Al-Zuriqat,&nbsp;Amina Yahya Mohammed,&nbsp;Abdulqadir J. Nashwan","doi":"10.1002/der2.70018","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Artificial intelligence (AI) is transforming dermatopathology by enhancing diagnostic accuracy, efficiency, and precision medicine. Despite its promise, challenges such as dataset biases, underrepresentation of diverse populations, and limited transparency hinder its widespread adoption. Addressing these gaps can set a new standard for equitable and patient-centered care. To evaluate how AI mitigates biases, improves interpretability, and promotes inclusivity in dermatopathology while highlighting novel technologies like multimodal models and explainable AI (XAI).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>AI-driven tools demonstrate significant improvements in diagnostic precision, particularly through multimodal models that integrate histological, genetic, and clinical data. Inclusive frameworks, such as the Monk scale, and advanced segmentation methods effectively address dataset biases. However, challenges such as the “black box” nature of AI, ethical concerns about data privacy, and limited access to advanced technologies in low-resource settings remain.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>AI offers transformative potential in dermatopathology, enabling equitable, and innovative diagnostics. Overcoming persistent challenges will require collaboration among dermatopathologists, AI developers, and policymakers. By prioritizing inclusivity, transparency, and interdisciplinary efforts, AI can redefine global standards in dermatopathology and foster patient-centered care.</p>\n </section>\n </div>","PeriodicalId":100366,"journal":{"name":"Dermatological Reviews","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/der2.70018","citationCount":"0","resultStr":"{\"title\":\"Transforming Dermatopathology With AI: Addressing Bias, Enhancing Interpretability, and Shaping Future Diagnostics\",\"authors\":\"Diala Ra'Ed Kamal Kakish,&nbsp;Jehad Feras AlSamhori,&nbsp;Andy Noel Ramirez Fajardo,&nbsp;Lana N. Qaqish,&nbsp;Layan Ahmed Jaber,&nbsp;Rawan Abujudeh,&nbsp;Mohammad Hathal Mahmoud Al-Zuriqat,&nbsp;Amina Yahya Mohammed,&nbsp;Abdulqadir J. Nashwan\",\"doi\":\"10.1002/der2.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Artificial intelligence (AI) is transforming dermatopathology by enhancing diagnostic accuracy, efficiency, and precision medicine. Despite its promise, challenges such as dataset biases, underrepresentation of diverse populations, and limited transparency hinder its widespread adoption. Addressing these gaps can set a new standard for equitable and patient-centered care. To evaluate how AI mitigates biases, improves interpretability, and promotes inclusivity in dermatopathology while highlighting novel technologies like multimodal models and explainable AI (XAI).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>AI-driven tools demonstrate significant improvements in diagnostic precision, particularly through multimodal models that integrate histological, genetic, and clinical data. Inclusive frameworks, such as the Monk scale, and advanced segmentation methods effectively address dataset biases. However, challenges such as the “black box” nature of AI, ethical concerns about data privacy, and limited access to advanced technologies in low-resource settings remain.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>AI offers transformative potential in dermatopathology, enabling equitable, and innovative diagnostics. Overcoming persistent challenges will require collaboration among dermatopathologists, AI developers, and policymakers. By prioritizing inclusivity, transparency, and interdisciplinary efforts, AI can redefine global standards in dermatopathology and foster patient-centered care.</p>\\n </section>\\n </div>\",\"PeriodicalId\":100366,\"journal\":{\"name\":\"Dermatological Reviews\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/der2.70018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dermatological Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/der2.70018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dermatological Reviews","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/der2.70018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)正在通过提高诊断的准确性、效率和精准医疗来改变皮肤病理学。尽管其前景光明,但数据集偏差、不同人群代表性不足以及透明度有限等挑战阻碍了其广泛采用。解决这些差距可以为公平和以患者为中心的护理树立新的标准。评估人工智能如何减轻偏见,提高可解释性,促进皮肤病理学的包容性,同时突出多模态模型和可解释人工智能(XAI)等新技术。结果:人工智能驱动的工具在诊断精度方面有了显著提高,特别是通过整合组织学、遗传和临床数据的多模式模型。包容性框架,如Monk尺度,和高级分割方法有效地解决了数据集偏差。然而,诸如人工智能的“黑匣子”性质、对数据隐私的伦理担忧以及在资源匮乏的环境中获取先进技术的机会有限等挑战仍然存在。结论人工智能在皮肤病理学方面具有变革性潜力,可以实现公平和创新的诊断。克服持续的挑战需要皮肤病理学家、人工智能开发人员和政策制定者之间的合作。通过优先考虑包容性、透明度和跨学科的努力,人工智能可以重新定义皮肤病理学的全球标准,并促进以患者为中心的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transforming Dermatopathology With AI: Addressing Bias, Enhancing Interpretability, and Shaping Future Diagnostics

Transforming Dermatopathology With AI: Addressing Bias, Enhancing Interpretability, and Shaping Future Diagnostics

Background

Artificial intelligence (AI) is transforming dermatopathology by enhancing diagnostic accuracy, efficiency, and precision medicine. Despite its promise, challenges such as dataset biases, underrepresentation of diverse populations, and limited transparency hinder its widespread adoption. Addressing these gaps can set a new standard for equitable and patient-centered care. To evaluate how AI mitigates biases, improves interpretability, and promotes inclusivity in dermatopathology while highlighting novel technologies like multimodal models and explainable AI (XAI).

Results

AI-driven tools demonstrate significant improvements in diagnostic precision, particularly through multimodal models that integrate histological, genetic, and clinical data. Inclusive frameworks, such as the Monk scale, and advanced segmentation methods effectively address dataset biases. However, challenges such as the “black box” nature of AI, ethical concerns about data privacy, and limited access to advanced technologies in low-resource settings remain.

Conclusion

AI offers transformative potential in dermatopathology, enabling equitable, and innovative diagnostics. Overcoming persistent challenges will require collaboration among dermatopathologists, AI developers, and policymakers. By prioritizing inclusivity, transparency, and interdisciplinary efforts, AI can redefine global standards in dermatopathology and foster patient-centered care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信