Sepideh Pajang, Frédéric Mouthereau, Alexandra Robert, Ajay Kumar, Jean-Paul Callot
{"title":"蛇纹岩化地幔的岩石物理模型和比利牛斯山脉天然氢的来源","authors":"Sepideh Pajang, Frédéric Mouthereau, Alexandra Robert, Ajay Kumar, Jean-Paul Callot","doi":"10.1029/2024GC011804","DOIUrl":null,"url":null,"abstract":"<p>The relationships between the serpentinized continental mantle in orogens, its geophysical signature at depth and hydrogen seepages are poorly understood. A petro-physical modeling approach accounting for serpentinization shows that a large domain of serpentinized mantle (1,800 km<sup>2</sup>) is present in the northern Pyrenees. The serpentinization reached a maximum of 40% during the mid-Cretaceous rifting, according to the predicted temperature and pressure. Although high-temperature serpentinization could have generated large quantify of hydrogen during the Mesozoic, the shallow and inactive faulting in Northern Pyrenees make this process unlikely to explain the entire serpentinization inferred by petro-physical modeling. A combination of low-temperature alteration of mafic and ultramafic rocks in the North Pyrenean Zone, active normal faulting in the North Pyrenean Fault, accumulation in local traps and transport of H<sub>2</sub>-rich fluids along inactive but permeable fault may explain the hydrogen seepages observed today.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011804","citationCount":"0","resultStr":"{\"title\":\"A Petro-Physical Model for Serpentinized Mantle and Origin of Natural Hydrogen in the Pyrenees\",\"authors\":\"Sepideh Pajang, Frédéric Mouthereau, Alexandra Robert, Ajay Kumar, Jean-Paul Callot\",\"doi\":\"10.1029/2024GC011804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The relationships between the serpentinized continental mantle in orogens, its geophysical signature at depth and hydrogen seepages are poorly understood. A petro-physical modeling approach accounting for serpentinization shows that a large domain of serpentinized mantle (1,800 km<sup>2</sup>) is present in the northern Pyrenees. The serpentinization reached a maximum of 40% during the mid-Cretaceous rifting, according to the predicted temperature and pressure. Although high-temperature serpentinization could have generated large quantify of hydrogen during the Mesozoic, the shallow and inactive faulting in Northern Pyrenees make this process unlikely to explain the entire serpentinization inferred by petro-physical modeling. A combination of low-temperature alteration of mafic and ultramafic rocks in the North Pyrenean Zone, active normal faulting in the North Pyrenean Fault, accumulation in local traps and transport of H<sub>2</sub>-rich fluids along inactive but permeable fault may explain the hydrogen seepages observed today.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011804\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011804\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011804","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Petro-Physical Model for Serpentinized Mantle and Origin of Natural Hydrogen in the Pyrenees
The relationships between the serpentinized continental mantle in orogens, its geophysical signature at depth and hydrogen seepages are poorly understood. A petro-physical modeling approach accounting for serpentinization shows that a large domain of serpentinized mantle (1,800 km2) is present in the northern Pyrenees. The serpentinization reached a maximum of 40% during the mid-Cretaceous rifting, according to the predicted temperature and pressure. Although high-temperature serpentinization could have generated large quantify of hydrogen during the Mesozoic, the shallow and inactive faulting in Northern Pyrenees make this process unlikely to explain the entire serpentinization inferred by petro-physical modeling. A combination of low-temperature alteration of mafic and ultramafic rocks in the North Pyrenean Zone, active normal faulting in the North Pyrenean Fault, accumulation in local traps and transport of H2-rich fluids along inactive but permeable fault may explain the hydrogen seepages observed today.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.