低温精馏系统分析与优化:降低精馏能耗

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Shiwei Qiao, Min Xu, Xiaofei Lv, Huijun Zhao
{"title":"低温精馏系统分析与优化:降低精馏能耗","authors":"Shiwei Qiao,&nbsp;Min Xu,&nbsp;Xiaofei Lv,&nbsp;Huijun Zhao","doi":"10.1002/ceat.202400296","DOIUrl":null,"url":null,"abstract":"<p>Carbon capture utilization and storage-enhanced oil recovery (EOR) is often considered the most promising technology for utilizing CO<sub>2</sub>. Cryogenic distillation is also viewed as the most reasonable separation option for handling CO<sub>2</sub>-EOR gases, despite being an energy-intensive process. The main challenge for this technology is energy loss. To overcome this challenge, one potential alternative is to optimize the system processes and parameters. This study proposes a new process to reduce distillation energy consumption by refluxing the distillate back to the distillation column. Operational parameter optimization was performed using the commercial simulator Aspen HYSYS for modeling and sensitivity analysis of process parameters using orthogonal experimental methods. The simulation results indicate that after optimization, the energy consumption in the distillation process decreased from 0.207 to 0.196 MJ kg<sup>−1</sup>, whereas the purity decreased slightly from 94.63 % to 94.52 %. However, the recovery increased from 97.8 % to 97.88 %, and the total energy consumption decreased from 0.772 to 0.761 MJ kg<sup>−1</sup>.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Optimization of Cryogenic Distillation Systems: For Reducing Distillation Energy Consumption\",\"authors\":\"Shiwei Qiao,&nbsp;Min Xu,&nbsp;Xiaofei Lv,&nbsp;Huijun Zhao\",\"doi\":\"10.1002/ceat.202400296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon capture utilization and storage-enhanced oil recovery (EOR) is often considered the most promising technology for utilizing CO<sub>2</sub>. Cryogenic distillation is also viewed as the most reasonable separation option for handling CO<sub>2</sub>-EOR gases, despite being an energy-intensive process. The main challenge for this technology is energy loss. To overcome this challenge, one potential alternative is to optimize the system processes and parameters. This study proposes a new process to reduce distillation energy consumption by refluxing the distillate back to the distillation column. Operational parameter optimization was performed using the commercial simulator Aspen HYSYS for modeling and sensitivity analysis of process parameters using orthogonal experimental methods. The simulation results indicate that after optimization, the energy consumption in the distillation process decreased from 0.207 to 0.196 MJ kg<sup>−1</sup>, whereas the purity decreased slightly from 94.63 % to 94.52 %. However, the recovery increased from 97.8 % to 97.88 %, and the total energy consumption decreased from 0.772 to 0.761 MJ kg<sup>−1</sup>.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400296\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳捕集利用和提高采收率(EOR)通常被认为是利用二氧化碳最有前途的技术。低温蒸馏也被认为是处理二氧化碳eor气体的最合理的分离选择,尽管这是一个能源密集型的过程。这项技术面临的主要挑战是能量损失。为了克服这一挑战,一个潜在的替代方案是优化系统流程和参数。本研究提出了一种降低蒸馏能耗的新工艺,即将馏出物回流至精馏塔。利用商用仿真软件Aspen HYSYS进行工艺参数优化,采用正交实验方法对工艺参数进行建模和灵敏度分析。仿真结果表明,优化后的精馏过程能耗从0.207 MJ kg−1下降到0.196 MJ kg−1,而纯度从94.63%略微下降到94.52%。回收率由97.8%提高到97.88%,总能耗由0.772 MJ kg−1降低到0.761 MJ kg−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Optimization of Cryogenic Distillation Systems: For Reducing Distillation Energy Consumption

Carbon capture utilization and storage-enhanced oil recovery (EOR) is often considered the most promising technology for utilizing CO2. Cryogenic distillation is also viewed as the most reasonable separation option for handling CO2-EOR gases, despite being an energy-intensive process. The main challenge for this technology is energy loss. To overcome this challenge, one potential alternative is to optimize the system processes and parameters. This study proposes a new process to reduce distillation energy consumption by refluxing the distillate back to the distillation column. Operational parameter optimization was performed using the commercial simulator Aspen HYSYS for modeling and sensitivity analysis of process parameters using orthogonal experimental methods. The simulation results indicate that after optimization, the energy consumption in the distillation process decreased from 0.207 to 0.196 MJ kg−1, whereas the purity decreased slightly from 94.63 % to 94.52 %. However, the recovery increased from 97.8 % to 97.88 %, and the total energy consumption decreased from 0.772 to 0.761 MJ kg−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信