{"title":"不同管结构对蛇形微管中超临界CO2传热的影响","authors":"Chaoqun Lin, Zhengming Yi, Qiu Meng, Yong Xu","doi":"10.1002/ceat.202300278","DOIUrl":null,"url":null,"abstract":"<p>In order to understand the effect of different tube structures on the heat transfer characteristics of supercritical CO<sub>2</sub> in heating serpentine micro-tubes, five structures are investigated. At the same inlet Reynolds number, because the periodic disturbance frequency of boundary layer and centrifugal force decrease with the increase of curvature radius and the boundary layer thickens with the increase of tube diameter, the comprehensive heat transfer performance of serpentine micro-tubes decreases with the increase of curvature radius and tube diameter. Gravitational buoyancy is independent of curvature radius but increases with the increase of tube diameter. Centrifugal force and centrifugal buoyancy decrease with the increase of curvature radius and tube diameter.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Different Tube Structures on Heat Transfer of Supercritical CO2 in Serpentine Micro-Tubes\",\"authors\":\"Chaoqun Lin, Zhengming Yi, Qiu Meng, Yong Xu\",\"doi\":\"10.1002/ceat.202300278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to understand the effect of different tube structures on the heat transfer characteristics of supercritical CO<sub>2</sub> in heating serpentine micro-tubes, five structures are investigated. At the same inlet Reynolds number, because the periodic disturbance frequency of boundary layer and centrifugal force decrease with the increase of curvature radius and the boundary layer thickens with the increase of tube diameter, the comprehensive heat transfer performance of serpentine micro-tubes decreases with the increase of curvature radius and tube diameter. Gravitational buoyancy is independent of curvature radius but increases with the increase of tube diameter. Centrifugal force and centrifugal buoyancy decrease with the increase of curvature radius and tube diameter.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300278\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300278","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of Different Tube Structures on Heat Transfer of Supercritical CO2 in Serpentine Micro-Tubes
In order to understand the effect of different tube structures on the heat transfer characteristics of supercritical CO2 in heating serpentine micro-tubes, five structures are investigated. At the same inlet Reynolds number, because the periodic disturbance frequency of boundary layer and centrifugal force decrease with the increase of curvature radius and the boundary layer thickens with the increase of tube diameter, the comprehensive heat transfer performance of serpentine micro-tubes decreases with the increase of curvature radius and tube diameter. Gravitational buoyancy is independent of curvature radius but increases with the increase of tube diameter. Centrifugal force and centrifugal buoyancy decrease with the increase of curvature radius and tube diameter.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.