基于自适应动态规划的辊窑温度分布H∞$H_\infty$控制

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Zeng Luo, Ning Chen, Jiayao Chen, Biao Luo, Binyan Li, Weihua Gui
{"title":"基于自适应动态规划的辊窑温度分布H∞$H_\\infty$控制","authors":"Zeng Luo,&nbsp;Ning Chen,&nbsp;Jiayao Chen,&nbsp;Biao Luo,&nbsp;Binyan Li,&nbsp;Weihua Gui","doi":"10.1049/cth2.12785","DOIUrl":null,"url":null,"abstract":"<p>The roller kiln with multi-temperature zones used for cathode material sintering is an interconnected system with time delay in energy transfer and precise control of the temperature for the preparation of cathode materials for lithium-ion batteries. However, the interconnection between the temperature zones, the time delay of the temperature state, and the disturbance of the external environment make it difficult to control the sintering process. For this reason, this paper develops a distributed <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$H_{\\infty }$</annotation>\n </semantics></math> control of the temperature of roller kiln based on adaptive dynamic programming (ADP). Firstly, the heat transfer mechanism of sintering process is discussed; the law of energy conservation provides the physical basis for the sintering process on which the autocorrelation function method identifies the time delay. Then, the cost function is constructed by combining the Lyapunov–Krasovskii function containing the time delay, the temperature state, the heating power of the silicon carbon rod and the perturbation. Subsequently, Hamilton–Jacobi–Isaac equation with the optimal cost function and the optimal distributed control strategy are approximated by neural network of ADP. Finally, the stability of the closed-loop system is proved by Lyapunov functional analysis, and the effectiveness of the proposed method is verified by the simulation results of roller kiln temperature control.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12785","citationCount":"0","resultStr":"{\"title\":\"Distributed \\n \\n \\n H\\n ∞\\n \\n $H_\\\\infty$\\n control for roller kiln temperature based on adaptive dynamic programming\",\"authors\":\"Zeng Luo,&nbsp;Ning Chen,&nbsp;Jiayao Chen,&nbsp;Biao Luo,&nbsp;Binyan Li,&nbsp;Weihua Gui\",\"doi\":\"10.1049/cth2.12785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The roller kiln with multi-temperature zones used for cathode material sintering is an interconnected system with time delay in energy transfer and precise control of the temperature for the preparation of cathode materials for lithium-ion batteries. However, the interconnection between the temperature zones, the time delay of the temperature state, and the disturbance of the external environment make it difficult to control the sintering process. For this reason, this paper develops a distributed <span></span><math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$H_{\\\\infty }$</annotation>\\n </semantics></math> control of the temperature of roller kiln based on adaptive dynamic programming (ADP). Firstly, the heat transfer mechanism of sintering process is discussed; the law of energy conservation provides the physical basis for the sintering process on which the autocorrelation function method identifies the time delay. Then, the cost function is constructed by combining the Lyapunov–Krasovskii function containing the time delay, the temperature state, the heating power of the silicon carbon rod and the perturbation. Subsequently, Hamilton–Jacobi–Isaac equation with the optimal cost function and the optimal distributed control strategy are approximated by neural network of ADP. Finally, the stability of the closed-loop system is proved by Lyapunov functional analysis, and the effectiveness of the proposed method is verified by the simulation results of roller kiln temperature control.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12785\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12785\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12785","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

用于锂离子电池正极材料烧结的多温区滚筒窑是一个具有能量传递时滞和温度精确控制的互联系统。然而,温度区域之间的相互联系,温度状态的时间延迟以及外部环境的干扰使得烧结过程难以控制。为此,本文提出了一种基于自适应动态规划(ADP)的辊窑温度分布式H∞$H_{\infty }$控制方法。首先,讨论了烧结过程的传热机理;能量守恒定律为烧结过程提供了物理基础,自相关函数法在此基础上识别时间延迟。然后,结合包含时滞、温度状态、硅碳棒加热功率和微扰的Lyapunov-Krasovskii函数,构造代价函数。然后,利用ADP神经网络逼近具有最优代价函数的Hamilton-Jacobi-Isaac方程和最优分布式控制策略。最后,通过Lyapunov泛函分析证明了闭环系统的稳定性,并通过辊道窑温度控制的仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributed 
         
            
               H
               ∞
            
            $H_\infty$
          control for roller kiln temperature based on adaptive dynamic programming

Distributed H ∞ $H_\infty$ control for roller kiln temperature based on adaptive dynamic programming

The roller kiln with multi-temperature zones used for cathode material sintering is an interconnected system with time delay in energy transfer and precise control of the temperature for the preparation of cathode materials for lithium-ion batteries. However, the interconnection between the temperature zones, the time delay of the temperature state, and the disturbance of the external environment make it difficult to control the sintering process. For this reason, this paper develops a distributed H $H_{\infty }$ control of the temperature of roller kiln based on adaptive dynamic programming (ADP). Firstly, the heat transfer mechanism of sintering process is discussed; the law of energy conservation provides the physical basis for the sintering process on which the autocorrelation function method identifies the time delay. Then, the cost function is constructed by combining the Lyapunov–Krasovskii function containing the time delay, the temperature state, the heating power of the silicon carbon rod and the perturbation. Subsequently, Hamilton–Jacobi–Isaac equation with the optimal cost function and the optimal distributed control strategy are approximated by neural network of ADP. Finally, the stability of the closed-loop system is proved by Lyapunov functional analysis, and the effectiveness of the proposed method is verified by the simulation results of roller kiln temperature control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信