响应面方法研究丙二醇(100)/石墨烯纳米流体的粘度以确定最佳条件

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Raviteja Surakasi, Salah J. Mohammed, Hasan Sh. Majdi, Ali Majdi, Parveen Berwal, Mohammad Amir Khan, Wahaj Ahmad Khan
{"title":"响应面方法研究丙二醇(100)/石墨烯纳米流体的粘度以确定最佳条件","authors":"Raviteja Surakasi,&nbsp;Salah J. Mohammed,&nbsp;Hasan Sh. Majdi,&nbsp;Ali Majdi,&nbsp;Parveen Berwal,&nbsp;Mohammad Amir Khan,&nbsp;Wahaj Ahmad Khan","doi":"10.1002/eng2.13032","DOIUrl":null,"url":null,"abstract":"<p>This work adopted response surface methodology (RSM) to analyze the behavior of a nanofluid based on propylene glycol. The laboratory conditions in this investigation involve a temperature range of 40°C–120°C and a weight percentage that varies from 0% to 0.5%. Initially viscosity was predicted using Redwood viscometer using the nanofluid solutions. To find the most accurate predictive model and generate an ideal solution, RSM was used. The current study was inspired by the lack of consistency among laboratory behavior and real-world applications and the statistical-mathematical analysis of modelers' performance, contrast, and motivations. Two-factor interaction (2FI), quadratic, cubic, and quartic models are only a few tested. Investigating and evaluating the different statistical features of these modeling functions is a new contribution to the field. The quartic model represents the characteristics of nanofluids with double the accuracy of other models, as shown by statistical analysis. The <i>R</i><sup>2</sup> coefficient, the coefficient of variation (CV%), and the <i>p</i>-value are compared as metrics for assessing the models. The indexes for the quartic model are 0.9940, 3.53%, and 0.0001, in that order. Nanofluids should have a viscosity of 0.335 m<sup>2</sup>/s at 120°C along with a weight percentage of 0.5%.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13032","citationCount":"0","resultStr":"{\"title\":\"Response Surface Methodology Investigation of the Viscosity of Propylene Glycol (100)/Graphene Nanofluid to Determine the Optimal Conditions\",\"authors\":\"Raviteja Surakasi,&nbsp;Salah J. Mohammed,&nbsp;Hasan Sh. Majdi,&nbsp;Ali Majdi,&nbsp;Parveen Berwal,&nbsp;Mohammad Amir Khan,&nbsp;Wahaj Ahmad Khan\",\"doi\":\"10.1002/eng2.13032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work adopted response surface methodology (RSM) to analyze the behavior of a nanofluid based on propylene glycol. The laboratory conditions in this investigation involve a temperature range of 40°C–120°C and a weight percentage that varies from 0% to 0.5%. Initially viscosity was predicted using Redwood viscometer using the nanofluid solutions. To find the most accurate predictive model and generate an ideal solution, RSM was used. The current study was inspired by the lack of consistency among laboratory behavior and real-world applications and the statistical-mathematical analysis of modelers' performance, contrast, and motivations. Two-factor interaction (2FI), quadratic, cubic, and quartic models are only a few tested. Investigating and evaluating the different statistical features of these modeling functions is a new contribution to the field. The quartic model represents the characteristics of nanofluids with double the accuracy of other models, as shown by statistical analysis. The <i>R</i><sup>2</sup> coefficient, the coefficient of variation (CV%), and the <i>p</i>-value are compared as metrics for assessing the models. The indexes for the quartic model are 0.9940, 3.53%, and 0.0001, in that order. Nanofluids should have a viscosity of 0.335 m<sup>2</sup>/s at 120°C along with a weight percentage of 0.5%.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13032\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Response Surface Methodology Investigation of the Viscosity of Propylene Glycol (100)/Graphene Nanofluid to Determine the Optimal Conditions

Response Surface Methodology Investigation of the Viscosity of Propylene Glycol (100)/Graphene Nanofluid to Determine the Optimal Conditions

This work adopted response surface methodology (RSM) to analyze the behavior of a nanofluid based on propylene glycol. The laboratory conditions in this investigation involve a temperature range of 40°C–120°C and a weight percentage that varies from 0% to 0.5%. Initially viscosity was predicted using Redwood viscometer using the nanofluid solutions. To find the most accurate predictive model and generate an ideal solution, RSM was used. The current study was inspired by the lack of consistency among laboratory behavior and real-world applications and the statistical-mathematical analysis of modelers' performance, contrast, and motivations. Two-factor interaction (2FI), quadratic, cubic, and quartic models are only a few tested. Investigating and evaluating the different statistical features of these modeling functions is a new contribution to the field. The quartic model represents the characteristics of nanofluids with double the accuracy of other models, as shown by statistical analysis. The R2 coefficient, the coefficient of variation (CV%), and the p-value are compared as metrics for assessing the models. The indexes for the quartic model are 0.9940, 3.53%, and 0.0001, in that order. Nanofluids should have a viscosity of 0.335 m2/s at 120°C along with a weight percentage of 0.5%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信