容差动态无线充电的时域设计

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Juan Carlos Quirós, Álvaro Llamas Calvo, Alicia Triviño, Eliseo Villagrasa Guerrrero
{"title":"容差动态无线充电的时域设计","authors":"Juan Carlos Quirós,&nbsp;Álvaro Llamas Calvo,&nbsp;Alicia Triviño,&nbsp;Eliseo Villagrasa Guerrrero","doi":"10.1049/pel2.12777","DOIUrl":null,"url":null,"abstract":"<p>Wireless power transfer (WPT) offers a safer and more convenient alternative to traditional charging methods. In the automotive sector, dynamic WPT presents a promising solution by reducing battery size and enhancing vehicle usability. The key components of dynamic WPT systems are the coils and their compensation topologies. This paper provides a detailed analysis of these elements to optimize system performance. First, different coil geometries are systematically evaluated using finite element analysis, aiming to identify designs that minimize electrical parameter variations, which can damage electronics and make the control more complex. Then, the most suitable compensation topology is determined through time-domain analysis, which is more accurate under dynamic conditions than the commonly used phasor-based approach. This design process based on time-domain analysis is validated with a 100 W dynamic charger prototype, demonstrating the system's transient behaviour. Experimental results show an efficiency of up to 80% and high tolerance to misalignment under various load conditions.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12777","citationCount":"0","resultStr":"{\"title\":\"Time-domain design for misalignment-tolerant dynamic wireless charging\",\"authors\":\"Juan Carlos Quirós,&nbsp;Álvaro Llamas Calvo,&nbsp;Alicia Triviño,&nbsp;Eliseo Villagrasa Guerrrero\",\"doi\":\"10.1049/pel2.12777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wireless power transfer (WPT) offers a safer and more convenient alternative to traditional charging methods. In the automotive sector, dynamic WPT presents a promising solution by reducing battery size and enhancing vehicle usability. The key components of dynamic WPT systems are the coils and their compensation topologies. This paper provides a detailed analysis of these elements to optimize system performance. First, different coil geometries are systematically evaluated using finite element analysis, aiming to identify designs that minimize electrical parameter variations, which can damage electronics and make the control more complex. Then, the most suitable compensation topology is determined through time-domain analysis, which is more accurate under dynamic conditions than the commonly used phasor-based approach. This design process based on time-domain analysis is validated with a 100 W dynamic charger prototype, demonstrating the system's transient behaviour. Experimental results show an efficiency of up to 80% and high tolerance to misalignment under various load conditions.</p>\",\"PeriodicalId\":56302,\"journal\":{\"name\":\"IET Power Electronics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12777\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12777\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12777","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线电力传输(WPT)提供了一种比传统充电方式更安全、更方便的替代方案。在汽车领域,动态WPT通过减小电池尺寸和提高车辆可用性提供了一个很有前途的解决方案。动态WPT系统的关键部件是线圈及其补偿拓扑结构。本文对这些因素进行了详细的分析,以优化系统性能。首先,使用有限元分析系统地评估了不同的线圈几何形状,旨在确定最大限度地减少电气参数变化的设计,这些变化可能会损坏电子设备并使控制更加复杂。然后,通过时域分析确定最合适的补偿拓扑,在动态条件下比常用的基于相量的补偿拓扑更精确。基于时域分析的设计过程通过100 W动态充电器原型验证,展示了系统的瞬态行为。实验结果表明,在各种负载条件下,该方法的效率可达80%以上,并具有较高的误差容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Time-domain design for misalignment-tolerant dynamic wireless charging

Time-domain design for misalignment-tolerant dynamic wireless charging

Wireless power transfer (WPT) offers a safer and more convenient alternative to traditional charging methods. In the automotive sector, dynamic WPT presents a promising solution by reducing battery size and enhancing vehicle usability. The key components of dynamic WPT systems are the coils and their compensation topologies. This paper provides a detailed analysis of these elements to optimize system performance. First, different coil geometries are systematically evaluated using finite element analysis, aiming to identify designs that minimize electrical parameter variations, which can damage electronics and make the control more complex. Then, the most suitable compensation topology is determined through time-domain analysis, which is more accurate under dynamic conditions than the commonly used phasor-based approach. This design process based on time-domain analysis is validated with a 100 W dynamic charger prototype, demonstrating the system's transient behaviour. Experimental results show an efficiency of up to 80% and high tolerance to misalignment under various load conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Power Electronics
IET Power Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
5.50
自引率
10.00%
发文量
195
审稿时长
5.1 months
期刊介绍: IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes: Applications: Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances. Technologies: Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies. Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials. Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems. Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques. Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material. Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest. Special Issues. Current Call for papers: Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信