{"title":"基于热电双向温度控制的肌腱驱动刚度可调软执行器。抛光工艺。1/2025)","authors":"Yunlong Gao, Shikun Lin, Chuanwei Liang, Siqi Qiu, Chengyun Long, Yingjun Wang, Yunquan Li, Yuan-Fang Zhang","doi":"10.1002/admt.202570004","DOIUrl":null,"url":null,"abstract":"<p><b>Stiffness-Tunable Soft Actuators</b></p><p>In article number 2401293, Yuan-Fang Zhang and co-workers present a tendon-driven soft actuator having both high load capacity and shape adaptability. By employing thermoelectric modules for bidirectional temperature control and graphene for efficient heat transfer in the actuator body, rapid stiffness tuning is achieved without extra cooling systems. The simplistic design further enhances the manufacturability and maneuverability of the actuator.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202570004","citationCount":"0","resultStr":"{\"title\":\"Tendon-Driven Stiffness-Tunable Soft Actuator via Thermoelectric-based Bidirectional Temperature Control (Adv. Mater. Technol. 1/2025)\",\"authors\":\"Yunlong Gao, Shikun Lin, Chuanwei Liang, Siqi Qiu, Chengyun Long, Yingjun Wang, Yunquan Li, Yuan-Fang Zhang\",\"doi\":\"10.1002/admt.202570004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Stiffness-Tunable Soft Actuators</b></p><p>In article number 2401293, Yuan-Fang Zhang and co-workers present a tendon-driven soft actuator having both high load capacity and shape adaptability. By employing thermoelectric modules for bidirectional temperature control and graphene for efficient heat transfer in the actuator body, rapid stiffness tuning is achieved without extra cooling systems. The simplistic design further enhances the manufacturability and maneuverability of the actuator.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202570004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202570004\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202570004","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tendon-Driven Stiffness-Tunable Soft Actuator via Thermoelectric-based Bidirectional Temperature Control (Adv. Mater. Technol. 1/2025)
Stiffness-Tunable Soft Actuators
In article number 2401293, Yuan-Fang Zhang and co-workers present a tendon-driven soft actuator having both high load capacity and shape adaptability. By employing thermoelectric modules for bidirectional temperature control and graphene for efficient heat transfer in the actuator body, rapid stiffness tuning is achieved without extra cooling systems. The simplistic design further enhances the manufacturability and maneuverability of the actuator.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.