基于热液活检分析的血清样本诊断胰腺癌的机器学习模型的开发

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Sonia Hermoso-Durán, Nicolas Fraunhoffer, Judith Millastre-Bocos, Oscar Sanchez-Gracia, Pablo F. Garrido, Sonia Vega, Ángel Lanas, Juan Iovanna, Adrián Velázquez-Campoy, Olga Abian
{"title":"基于热液活检分析的血清样本诊断胰腺癌的机器学习模型的开发","authors":"Sonia Hermoso-Durán,&nbsp;Nicolas Fraunhoffer,&nbsp;Judith Millastre-Bocos,&nbsp;Oscar Sanchez-Gracia,&nbsp;Pablo F. Garrido,&nbsp;Sonia Vega,&nbsp;Ángel Lanas,&nbsp;Juan Iovanna,&nbsp;Adrián Velázquez-Campoy,&nbsp;Olga Abian","doi":"10.1002/aisy.202400308","DOIUrl":null,"url":null,"abstract":"<p>Pancreatic ductal adenocarcinoma (PDAC) poses a considerable diagnostic and therapeutic challenge due to the lack of specific biomarkers and late diagnosis. Early detection is crucial for improving prognosis, but current techniques are insufficient. An innovative approach based on differential scanning calorimetry (DSC) of blood serum samples, thermal liquid biopsy (TLB), combined with machine-learning (ML) analysis, may offer a more efficient method for diagnosing PDAC. Serum samples from a cohort of 212 PDAC patients and 184 healthy controls are studied. DSC thermograms are analyzed using ML models. The generated models are built applying algorithms based on penalized regression, resampling, categorization, cross validation, and variable selection. The ML-based model demonstrates outstanding ability to discriminate between PDAC patients and control subjects, with a sensitivity of 90% and an area under the ROC receiver operating characteristic curve of 0.83 in the training and test groups. Application of the model to an independent validation cohort of 113 PDAC patients confirms its robustness and utility as a diagnosis tool. The application of ML to serum TLB data emerges as a promising  methodology for early diagnosis, representing a significant advance for detecting and managing PDAC, envisaging a minimally invasive and more efficient methodology for identifying biomarkers.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400308","citationCount":"0","resultStr":"{\"title\":\"Development of a Machine-Learning Model for Diagnosis of Pancreatic Cancer from Serum Samples Analyzed by Thermal Liquid Biopsy\",\"authors\":\"Sonia Hermoso-Durán,&nbsp;Nicolas Fraunhoffer,&nbsp;Judith Millastre-Bocos,&nbsp;Oscar Sanchez-Gracia,&nbsp;Pablo F. Garrido,&nbsp;Sonia Vega,&nbsp;Ángel Lanas,&nbsp;Juan Iovanna,&nbsp;Adrián Velázquez-Campoy,&nbsp;Olga Abian\",\"doi\":\"10.1002/aisy.202400308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pancreatic ductal adenocarcinoma (PDAC) poses a considerable diagnostic and therapeutic challenge due to the lack of specific biomarkers and late diagnosis. Early detection is crucial for improving prognosis, but current techniques are insufficient. An innovative approach based on differential scanning calorimetry (DSC) of blood serum samples, thermal liquid biopsy (TLB), combined with machine-learning (ML) analysis, may offer a more efficient method for diagnosing PDAC. Serum samples from a cohort of 212 PDAC patients and 184 healthy controls are studied. DSC thermograms are analyzed using ML models. The generated models are built applying algorithms based on penalized regression, resampling, categorization, cross validation, and variable selection. The ML-based model demonstrates outstanding ability to discriminate between PDAC patients and control subjects, with a sensitivity of 90% and an area under the ROC receiver operating characteristic curve of 0.83 in the training and test groups. Application of the model to an independent validation cohort of 113 PDAC patients confirms its robustness and utility as a diagnosis tool. The application of ML to serum TLB data emerges as a promising  methodology for early diagnosis, representing a significant advance for detecting and managing PDAC, envisaging a minimally invasive and more efficient methodology for identifying biomarkers.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400308\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDAC)由于缺乏特异性的生物标志物和晚期诊断,给诊断和治疗带来了相当大的挑战。早期发现对改善预后至关重要,但目前的技术还不够。一种基于血清样本差示扫描量热法(DSC)的创新方法,热液活检(TLB),结合机器学习(ML)分析,可能为PDAC的诊断提供更有效的方法。研究了212例PDAC患者和184例健康对照者的血清样本。DSC热图分析使用ML模型。生成的模型是应用基于惩罚回归、重采样、分类、交叉验证和变量选择的算法构建的。基于ml的模型对PDAC患者和对照组的区分能力突出,训练组和试验组的灵敏度为90%,ROC受试者工作特征曲线下面积为0.83。将该模型应用于113例PDAC患者的独立验证队列,证实了其作为诊断工具的稳健性和实用性。ML对血清TLB数据的应用是一种很有前途的早期诊断方法,代表了PDAC检测和管理的重大进步,设想了一种微创和更有效的识别生物标志物的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of a Machine-Learning Model for Diagnosis of Pancreatic Cancer from Serum Samples Analyzed by Thermal Liquid Biopsy

Development of a Machine-Learning Model for Diagnosis of Pancreatic Cancer from Serum Samples Analyzed by Thermal Liquid Biopsy

Pancreatic ductal adenocarcinoma (PDAC) poses a considerable diagnostic and therapeutic challenge due to the lack of specific biomarkers and late diagnosis. Early detection is crucial for improving prognosis, but current techniques are insufficient. An innovative approach based on differential scanning calorimetry (DSC) of blood serum samples, thermal liquid biopsy (TLB), combined with machine-learning (ML) analysis, may offer a more efficient method for diagnosing PDAC. Serum samples from a cohort of 212 PDAC patients and 184 healthy controls are studied. DSC thermograms are analyzed using ML models. The generated models are built applying algorithms based on penalized regression, resampling, categorization, cross validation, and variable selection. The ML-based model demonstrates outstanding ability to discriminate between PDAC patients and control subjects, with a sensitivity of 90% and an area under the ROC receiver operating characteristic curve of 0.83 in the training and test groups. Application of the model to an independent validation cohort of 113 PDAC patients confirms its robustness and utility as a diagnosis tool. The application of ML to serum TLB data emerges as a promising  methodology for early diagnosis, representing a significant advance for detecting and managing PDAC, envisaging a minimally invasive and more efficient methodology for identifying biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信