推进骨组织工程和3D生物打印的植物源化合物和材料:传统医学方面和当前的观点

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jyrki Heinämäki, Oleh Koshovyi, Iryna Botsula, Alina Shpychak, Hung Quoc Vo, Hoai Thi Nguyen, Ain Raal
{"title":"推进骨组织工程和3D生物打印的植物源化合物和材料:传统医学方面和当前的观点","authors":"Jyrki Heinämäki,&nbsp;Oleh Koshovyi,&nbsp;Iryna Botsula,&nbsp;Alina Shpychak,&nbsp;Hung Quoc Vo,&nbsp;Hoai Thi Nguyen,&nbsp;Ain Raal","doi":"10.1155/term/2812191","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Bone defects are becoming a true challenge in global health care due to the aging population and higher prevalence of musculoskeletal disorders. The interest in using plant-origin compounds and plant-derived biomaterials in bone tissue engineering (BTE) has been increased due to their availability (abundance), safety, biocompatibility, biodegradability, and low cost. Plant-origin compounds have supportive effects on bone tissue healing, and cell-laden plant-derived biomaterials can be applied in formulating bioinks for three-dimensional (3D) bioprinting to facilitate the preparation of native bone tissue–mimicking structures and customized bone scaffolds. Such plant-derived materials also have the capacity to improve cell viability and support osteoconductive and osteoinductive properties of a bone construct. In this article, we review the ethnomedical aspects related to the use of medicinal plants and plant-origin bioactive compounds in bone healing and the recent developments in the 3D bioprinting of bone constructs with plant-derived biomaterials for advancing BTE. The commonly used 3D-bioprinting techniques, the properties of plant-origin compounds and biomaterials (for bone 3D bioprinting), and the selective examples of bone scaffolds fabricated using plant-derived biomaterials are discussed with a special reference set on applicability, performance, advantages, limitations, and challenges. Plant-origin compounds, biomaterials, and biomimetic 3D-bioprinted constructs could be the basis for a next-generation BTE.</p>\n </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2025 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/2812191","citationCount":"0","resultStr":"{\"title\":\"Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives\",\"authors\":\"Jyrki Heinämäki,&nbsp;Oleh Koshovyi,&nbsp;Iryna Botsula,&nbsp;Alina Shpychak,&nbsp;Hung Quoc Vo,&nbsp;Hoai Thi Nguyen,&nbsp;Ain Raal\",\"doi\":\"10.1155/term/2812191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Bone defects are becoming a true challenge in global health care due to the aging population and higher prevalence of musculoskeletal disorders. The interest in using plant-origin compounds and plant-derived biomaterials in bone tissue engineering (BTE) has been increased due to their availability (abundance), safety, biocompatibility, biodegradability, and low cost. Plant-origin compounds have supportive effects on bone tissue healing, and cell-laden plant-derived biomaterials can be applied in formulating bioinks for three-dimensional (3D) bioprinting to facilitate the preparation of native bone tissue–mimicking structures and customized bone scaffolds. Such plant-derived materials also have the capacity to improve cell viability and support osteoconductive and osteoinductive properties of a bone construct. In this article, we review the ethnomedical aspects related to the use of medicinal plants and plant-origin bioactive compounds in bone healing and the recent developments in the 3D bioprinting of bone constructs with plant-derived biomaterials for advancing BTE. The commonly used 3D-bioprinting techniques, the properties of plant-origin compounds and biomaterials (for bone 3D bioprinting), and the selective examples of bone scaffolds fabricated using plant-derived biomaterials are discussed with a special reference set on applicability, performance, advantages, limitations, and challenges. Plant-origin compounds, biomaterials, and biomimetic 3D-bioprinted constructs could be the basis for a next-generation BTE.</p>\\n </div>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/term/2812191\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/term/2812191\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/term/2812191","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于人口老龄化和肌肉骨骼疾病的高患病率,骨缺损正在成为全球卫生保健的真正挑战。由于植物源化合物和植物源生物材料的可用性(丰度)、安全性、生物相容性、可生物降解性和低成本,在骨组织工程(BTE)中使用植物源化合物和植物源生物材料的兴趣日益增加。植物源化合物对骨组织愈合具有支持作用,承载细胞的植物源生物材料可用于配制三维(3D)生物打印的生物墨水,以促进制备天然骨组织模拟结构和定制骨支架。这种植物源性材料还具有提高细胞活力和支持骨结构的骨传导和骨诱导特性的能力。在这篇文章中,我们回顾了与药用植物和植物源性生物活性化合物在骨愈合中的使用相关的民族医学方面,以及植物源性生物材料骨结构3D生物打印的最新进展,以推进BTE。本文讨论了常用的生物3D打印技术,植物源化合物和生物材料的特性(用于骨3D生物打印),以及使用植物源生物材料制造骨支架的选择性示例,并对适用性,性能,优势,局限性和挑战进行了特别的参考集。植物源化合物、生物材料和仿生3d生物打印结构可以成为下一代BTE的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives

Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives

Bone defects are becoming a true challenge in global health care due to the aging population and higher prevalence of musculoskeletal disorders. The interest in using plant-origin compounds and plant-derived biomaterials in bone tissue engineering (BTE) has been increased due to their availability (abundance), safety, biocompatibility, biodegradability, and low cost. Plant-origin compounds have supportive effects on bone tissue healing, and cell-laden plant-derived biomaterials can be applied in formulating bioinks for three-dimensional (3D) bioprinting to facilitate the preparation of native bone tissue–mimicking structures and customized bone scaffolds. Such plant-derived materials also have the capacity to improve cell viability and support osteoconductive and osteoinductive properties of a bone construct. In this article, we review the ethnomedical aspects related to the use of medicinal plants and plant-origin bioactive compounds in bone healing and the recent developments in the 3D bioprinting of bone constructs with plant-derived biomaterials for advancing BTE. The commonly used 3D-bioprinting techniques, the properties of plant-origin compounds and biomaterials (for bone 3D bioprinting), and the selective examples of bone scaffolds fabricated using plant-derived biomaterials are discussed with a special reference set on applicability, performance, advantages, limitations, and challenges. Plant-origin compounds, biomaterials, and biomimetic 3D-bioprinted constructs could be the basis for a next-generation BTE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信