定量成像的数据驱动方法

Q1 Mathematics
Guozhi Dong, Moritz Flaschel, Michael Hintermüller, Kostas Papafitsoros, Clemens Sirotenko, Karsten Tabelow
{"title":"定量成像的数据驱动方法","authors":"Guozhi Dong,&nbsp;Moritz Flaschel,&nbsp;Michael Hintermüller,&nbsp;Kostas Papafitsoros,&nbsp;Clemens Sirotenko,&nbsp;Karsten Tabelow","doi":"10.1002/gamm.202470014","DOIUrl":null,"url":null,"abstract":"<p>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative magnetic resonance imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470014","citationCount":"0","resultStr":"{\"title\":\"Data-driven methods for quantitative imaging\",\"authors\":\"Guozhi Dong,&nbsp;Moritz Flaschel,&nbsp;Michael Hintermüller,&nbsp;Kostas Papafitsoros,&nbsp;Clemens Sirotenko,&nbsp;Karsten Tabelow\",\"doi\":\"10.1002/gamm.202470014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative magnetic resonance imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在定量成像领域,在一个像素或体素的图像信息在一个基础域需要关于成像物质的关键信息。这在医学成像应用中尤其重要,例如定量磁共振成像(qMRI),其中生物物理参数的定量图可以表征成像组织,从而导致更准确的诊断。这样的定量值在随后的自动化分类任务中也很有用,例如,为了区分正常组织和异常组织。这些定量图的精确重建通常是通过解决两个耦合的逆问题来实现的,这两个问题涉及一个(前向)测量算子,通常是病态的,以及一个物理过程,该过程将所需的定量参数与重建的定性图像联系起来,给定一些潜在的测量数据。在这篇综述中,通过将qMRI作为一个原型应用,我们提供了一个面向数学的概述,说明如何将数据驱动的方法应用于这些逆问题中,最终改善相关定量图的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-driven methods for quantitative imaging

Data-driven methods for quantitative imaging

In the field of quantitative imaging, the image information at a pixel or voxel in an underlying domain entails crucial information about the imaged matter. This is particularly important in medical imaging applications, such as quantitative magnetic resonance imaging (qMRI), where quantitative maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these quantitative maps is typically achieved by solving two coupled inverse problems which involve a (forward) measurement operator, typically ill-posed, and a physical process that links the wanted quantitative parameters to the reconstructed qualitative image, given some underlying measurement data. In this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented overview on how data-driven approaches can be employed in these inverse problems eventually improving the reconstruction of the associated quantitative maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信