用于固态钠电池的无机固态电解质:电解质设计和界面挑战

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Dongsoo Lee, Ashok Kumar Kakarla, Seho Sun, Patrick Joohyun Kim, Junghyun Choi
{"title":"用于固态钠电池的无机固态电解质:电解质设计和界面挑战","authors":"Dongsoo Lee,&nbsp;Ashok Kumar Kakarla,&nbsp;Seho Sun,&nbsp;Patrick Joohyun Kim,&nbsp;Junghyun Choi","doi":"10.1002/celc.202400612","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in inorganic solid electrolytes (ISEs), achieving sodium (Na)-ion conductivities exceeding 10 <sup>-2</sup> S cm<sup>-1</sup> at room temperature (RT), have generated significant interest in the development of solid-state sodium batteries (SSSBs). However, the ISEs face challenges such as their limited electrochemical stability windows (ESWs) and compatibility issues with high-capacity, high-voltage cathode materials and Na metal anodes. The success of high-performance SSSBs hinges on developing ideal ISEs that deliver high Na<sup>+</sup> ion conductivities, robust chemical and electrochemical stability, and well constructed electrode/ISE interfaces. This review explores the fundamental principles and strategies to optimize SSSB performance by addressing issues related to ISEs and their interfaces, emphasizing that many interfacial challenges are intrinsically linked to ISE properties. It highlights recent advancements in ISE research, including the mechanisms of Na-ion conduction and the key factors influencing it, such as crystal structure, lattice dynamics, point defects, and grain boundaries. It also discusses prototyping strategies for cell design from the perspectives of material and defect chemistry. Additionally, the review identifies key challenges and future opportunities for advancing SSSBs and provides rational solutions to guide future research toward the practical realization of high-performance SSSBs.</p><p>Keywords: Solid-state sodium batteries; Inorganic solid electrolytes; Interfacial mechanism; Electrochemical stability window; Ionic conductivity; Modification strategies</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400612","citationCount":"0","resultStr":"{\"title\":\"Inorganic Solid-State Electrolytes for Solid-State Sodium Batteries: Electrolyte Design and Interfacial Challenges\",\"authors\":\"Dongsoo Lee,&nbsp;Ashok Kumar Kakarla,&nbsp;Seho Sun,&nbsp;Patrick Joohyun Kim,&nbsp;Junghyun Choi\",\"doi\":\"10.1002/celc.202400612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancements in inorganic solid electrolytes (ISEs), achieving sodium (Na)-ion conductivities exceeding 10 <sup>-2</sup> S cm<sup>-1</sup> at room temperature (RT), have generated significant interest in the development of solid-state sodium batteries (SSSBs). However, the ISEs face challenges such as their limited electrochemical stability windows (ESWs) and compatibility issues with high-capacity, high-voltage cathode materials and Na metal anodes. The success of high-performance SSSBs hinges on developing ideal ISEs that deliver high Na<sup>+</sup> ion conductivities, robust chemical and electrochemical stability, and well constructed electrode/ISE interfaces. This review explores the fundamental principles and strategies to optimize SSSB performance by addressing issues related to ISEs and their interfaces, emphasizing that many interfacial challenges are intrinsically linked to ISE properties. It highlights recent advancements in ISE research, including the mechanisms of Na-ion conduction and the key factors influencing it, such as crystal structure, lattice dynamics, point defects, and grain boundaries. It also discusses prototyping strategies for cell design from the perspectives of material and defect chemistry. Additionally, the review identifies key challenges and future opportunities for advancing SSSBs and provides rational solutions to guide future research toward the practical realization of high-performance SSSBs.</p><p>Keywords: Solid-state sodium batteries; Inorganic solid electrolytes; Interfacial mechanism; Electrochemical stability window; Ionic conductivity; Modification strategies</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400612\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400612\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400612","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

无机固体电解质(ISEs)的最新进展,在室温(RT)下实现了钠(Na)离子电导率超过10 - 2s cm-1,引起了人们对固态钠电池(SSSBs)发展的极大兴趣。然而,ise面临着诸如有限的电化学稳定窗口(ESWs)以及与高容量、高压阴极材料和Na金属阳极的兼容性问题等挑战。高性能SSSBs的成功取决于开发理想的ISE,提供高Na+离子电导率,强大的化学和电化学稳定性,以及结构良好的电极/ISE界面。本文探讨了通过解决与ISE及其接口相关的问题来优化SSSB性能的基本原则和策略,强调许多接口挑战与ISE特性有着内在的联系。它强调了ISE研究的最新进展,包括na离子传导的机制和影响它的关键因素,如晶体结构、晶格动力学、点缺陷和晶界。并从材料和缺陷化学的角度讨论了电池设计的原型化策略。此外,本文还指出了推进SSSBs的关键挑战和未来机遇,并提供了合理的解决方案,指导未来研究朝着高性能SSSBs的实际实现方向发展。关键词:固态钠电池;无机固体电解质;界面机制;电化学稳定性窗口;离子电导率;修改策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inorganic Solid-State Electrolytes for Solid-State Sodium Batteries: Electrolyte Design and Interfacial Challenges

Inorganic Solid-State Electrolytes for Solid-State Sodium Batteries: Electrolyte Design and Interfacial Challenges

Recent advancements in inorganic solid electrolytes (ISEs), achieving sodium (Na)-ion conductivities exceeding 10 -2 S cm-1 at room temperature (RT), have generated significant interest in the development of solid-state sodium batteries (SSSBs). However, the ISEs face challenges such as their limited electrochemical stability windows (ESWs) and compatibility issues with high-capacity, high-voltage cathode materials and Na metal anodes. The success of high-performance SSSBs hinges on developing ideal ISEs that deliver high Na+ ion conductivities, robust chemical and electrochemical stability, and well constructed electrode/ISE interfaces. This review explores the fundamental principles and strategies to optimize SSSB performance by addressing issues related to ISEs and their interfaces, emphasizing that many interfacial challenges are intrinsically linked to ISE properties. It highlights recent advancements in ISE research, including the mechanisms of Na-ion conduction and the key factors influencing it, such as crystal structure, lattice dynamics, point defects, and grain boundaries. It also discusses prototyping strategies for cell design from the perspectives of material and defect chemistry. Additionally, the review identifies key challenges and future opportunities for advancing SSSBs and provides rational solutions to guide future research toward the practical realization of high-performance SSSBs.

Keywords: Solid-state sodium batteries; Inorganic solid electrolytes; Interfacial mechanism; Electrochemical stability window; Ionic conductivity; Modification strategies

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信