为地热交换器构建数字孪生

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Montaser Mahmoud, Concetta Semeraro, Mohamad Ramadan, Mohammad Ali Abdelkareem, Abdul Ghani Olabi
{"title":"为地热交换器构建数字孪生","authors":"Montaser Mahmoud,&nbsp;Concetta Semeraro,&nbsp;Mohamad Ramadan,&nbsp;Mohammad Ali Abdelkareem,&nbsp;Abdul Ghani Olabi","doi":"10.1002/ceat.202300492","DOIUrl":null,"url":null,"abstract":"<p>This research investigates the development of a digital twin (DT) for ground heat exchangers (GHEs) and its potential to enhance the efficiency and sustainability of shallow geothermal energy systems. It introduces an innovative approach for building a GHE-DT that connects the physical and digital systems to monitor key parameters, predict issues, and optimize energy efficiency. The process involves several phases including implicit knowledge codification, data-driven analysis, model construction, and system design. The study emphasizes real-time monitoring of the effective parameters: ground temperature and fluid conditions (flow rate, temperature, and pressure). The GHE-DT's digital system mainly comprises three sections, namely, data storage, mathematical modeling, and data-driven modeling. The role of the presented mathematical model is to simulate the GHE's behavior and assess its performance characteristics, such as the heat exchanger's effectiveness and efficiency. Additionally, the data-driven model used in the proposed DT utilizes formal concept analysis and relation concept analysis to identify connections and associations among parameters for a better understanding of the GHE functioning. The GHE-DT provides useful services including trend analysis, problem prediction, and correlation analysis. These services provide engineers and operators with the opportunity to increase dependability, save maintenance costs, and optimize GHE performance.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building a Digital Twin for a Ground Heat Exchanger\",\"authors\":\"Montaser Mahmoud,&nbsp;Concetta Semeraro,&nbsp;Mohamad Ramadan,&nbsp;Mohammad Ali Abdelkareem,&nbsp;Abdul Ghani Olabi\",\"doi\":\"10.1002/ceat.202300492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research investigates the development of a digital twin (DT) for ground heat exchangers (GHEs) and its potential to enhance the efficiency and sustainability of shallow geothermal energy systems. It introduces an innovative approach for building a GHE-DT that connects the physical and digital systems to monitor key parameters, predict issues, and optimize energy efficiency. The process involves several phases including implicit knowledge codification, data-driven analysis, model construction, and system design. The study emphasizes real-time monitoring of the effective parameters: ground temperature and fluid conditions (flow rate, temperature, and pressure). The GHE-DT's digital system mainly comprises three sections, namely, data storage, mathematical modeling, and data-driven modeling. The role of the presented mathematical model is to simulate the GHE's behavior and assess its performance characteristics, such as the heat exchanger's effectiveness and efficiency. Additionally, the data-driven model used in the proposed DT utilizes formal concept analysis and relation concept analysis to identify connections and associations among parameters for a better understanding of the GHE functioning. The GHE-DT provides useful services including trend analysis, problem prediction, and correlation analysis. These services provide engineers and operators with the opportunity to increase dependability, save maintenance costs, and optimize GHE performance.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300492\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300492","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了地下热交换器(GHEs)数字孪生体(DT)的发展及其提高浅层地热能源系统效率和可持续性的潜力。它介绍了一种创新的方法,用于构建连接物理和数字系统的ge - dt,以监控关键参数、预测问题并优化能源效率。该过程包括几个阶段,包括隐性知识编码、数据驱动分析、模型构建和系统设计。该研究强调实时监测有效参数:地温和流体条件(流量、温度和压力)。ge - dt的数字系统主要包括数据存储、数学建模和数据驱动建模三个部分。所提出的数学模型的作用是模拟热交换器的行为和评估其性能特征,如热交换器的有效性和效率。此外,所提出的DT中使用的数据驱动模型利用形式概念分析和关系概念分析来识别参数之间的联系和关联,以便更好地理解GHE功能。geh - dt提供的有用服务包括趋势分析、问题预测和相关性分析。这些服务为工程师和运营商提供了提高可靠性、节省维护成本和优化GHE性能的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building a Digital Twin for a Ground Heat Exchanger

This research investigates the development of a digital twin (DT) for ground heat exchangers (GHEs) and its potential to enhance the efficiency and sustainability of shallow geothermal energy systems. It introduces an innovative approach for building a GHE-DT that connects the physical and digital systems to monitor key parameters, predict issues, and optimize energy efficiency. The process involves several phases including implicit knowledge codification, data-driven analysis, model construction, and system design. The study emphasizes real-time monitoring of the effective parameters: ground temperature and fluid conditions (flow rate, temperature, and pressure). The GHE-DT's digital system mainly comprises three sections, namely, data storage, mathematical modeling, and data-driven modeling. The role of the presented mathematical model is to simulate the GHE's behavior and assess its performance characteristics, such as the heat exchanger's effectiveness and efficiency. Additionally, the data-driven model used in the proposed DT utilizes formal concept analysis and relation concept analysis to identify connections and associations among parameters for a better understanding of the GHE functioning. The GHE-DT provides useful services including trend analysis, problem prediction, and correlation analysis. These services provide engineers and operators with the opportunity to increase dependability, save maintenance costs, and optimize GHE performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信