基于经典和贝叶斯范式的极端干旱风险估计

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Touqeer Ahmad, Safoorah Sabir, Irshad Ahmad Arshad, Taha Hasan, Olayan Albalawi
{"title":"基于经典和贝叶斯范式的极端干旱风险估计","authors":"Touqeer Ahmad,&nbsp;Safoorah Sabir,&nbsp;Irshad Ahmad Arshad,&nbsp;Taha Hasan,&nbsp;Olayan Albalawi","doi":"10.1002/joc.8705","DOIUrl":null,"url":null,"abstract":"<p>Drought poses significant challenges to both the environment and the economy, necessitating proactive mitigation strategies. This study introduces both classical and Bayesian Markov Chain Monte Carlo (MCMC) extreme value probabilistic models for quantifying drought risk. The models utilise the generalised extreme value (GEV) distribution to characterise the distribution of standardised precipitation index (SPI) and non-stationary standardised precipitation index (NSSPI) variables. Drought risk is probabilistically assessed across five regions in Baluchistan (a drought-prone area of Pakistan) over two 20-year periods per region. The study presents a novel approach in probabilistic quantification models, demonstrating slight performance improvement with the Bayesian MCMC paradigm, as evaluated by the continuously ranked probability scoring. Moreover, the application of the presented methodology can be extended to other climatic zones using Bayesian MCMC with informative priors constructed from historical records of the neighbouring regions.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8705","citationCount":"0","resultStr":"{\"title\":\"Estimating Extreme Drought Risk Through Classical and Bayesian Paradigms\",\"authors\":\"Touqeer Ahmad,&nbsp;Safoorah Sabir,&nbsp;Irshad Ahmad Arshad,&nbsp;Taha Hasan,&nbsp;Olayan Albalawi\",\"doi\":\"10.1002/joc.8705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drought poses significant challenges to both the environment and the economy, necessitating proactive mitigation strategies. This study introduces both classical and Bayesian Markov Chain Monte Carlo (MCMC) extreme value probabilistic models for quantifying drought risk. The models utilise the generalised extreme value (GEV) distribution to characterise the distribution of standardised precipitation index (SPI) and non-stationary standardised precipitation index (NSSPI) variables. Drought risk is probabilistically assessed across five regions in Baluchistan (a drought-prone area of Pakistan) over two 20-year periods per region. The study presents a novel approach in probabilistic quantification models, demonstrating slight performance improvement with the Bayesian MCMC paradigm, as evaluated by the continuously ranked probability scoring. Moreover, the application of the presented methodology can be extended to other climatic zones using Bayesian MCMC with informative priors constructed from historical records of the neighbouring regions.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"45 2\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8705\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8705\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8705","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

干旱对环境和经济都构成重大挑战,需要采取积极主动的缓解战略。本文引入经典模型和贝叶斯马尔可夫链蒙特卡罗(MCMC)极值概率模型来量化干旱风险。模型利用广义极值(GEV)分布来表征标准化降水指数(SPI)和非平稳标准化降水指数(NSSPI)变量的分布。对俾路支省(巴基斯坦干旱易发地区)五个地区的干旱风险进行了概率评估,每个地区分为两个20年周期。该研究提出了一种概率量化模型的新方法,通过连续排序概率评分来评估贝叶斯MCMC范式的性能略有提高。此外,该方法的应用可以扩展到其他气候带,使用贝叶斯MCMC与邻近地区的历史记录构建的信息先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating Extreme Drought Risk Through Classical and Bayesian Paradigms

Estimating Extreme Drought Risk Through Classical and Bayesian Paradigms

Drought poses significant challenges to both the environment and the economy, necessitating proactive mitigation strategies. This study introduces both classical and Bayesian Markov Chain Monte Carlo (MCMC) extreme value probabilistic models for quantifying drought risk. The models utilise the generalised extreme value (GEV) distribution to characterise the distribution of standardised precipitation index (SPI) and non-stationary standardised precipitation index (NSSPI) variables. Drought risk is probabilistically assessed across five regions in Baluchistan (a drought-prone area of Pakistan) over two 20-year periods per region. The study presents a novel approach in probabilistic quantification models, demonstrating slight performance improvement with the Bayesian MCMC paradigm, as evaluated by the continuously ranked probability scoring. Moreover, the application of the presented methodology can be extended to other climatic zones using Bayesian MCMC with informative priors constructed from historical records of the neighbouring regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信