Calderón-Zygmund关于一些指数增长李群的理论

IF 0.8 3区 数学 Q2 MATHEMATICS
Filippo De Mari, Matteo Levi, Matteo Monti, Maria Vallarino
{"title":"Calderón-Zygmund关于一些指数增长李群的理论","authors":"Filippo De Mari,&nbsp;Matteo Levi,&nbsp;Matteo Monti,&nbsp;Maria Vallarino","doi":"10.1002/mana.202300499","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <mi>N</mi>\n <mo>⋊</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$G = N \\rtimes A$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> is a stratified Lie group and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>=</mo>\n <msub>\n <mi>R</mi>\n <mo>+</mo>\n </msub>\n </mrow>\n <annotation>$A= \\mathbb {R}_+$</annotation>\n </semantics></math> acts on <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> via automorphic dilations. We prove that the group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> has the Calderón–Zygmund property, in the sense of Hebisch and Steger, with respect to a family of flow measures and metrics. This generalizes in various directions previous works by Hebisch and Steger and Martini et al., and provides a new approach in the development of the Calderón–Zygmund theory in Lie groups of exponential growth. We also prove a weak-type (1,1) estimate for the Hardy–Littlewood maximal operator naturally arising in this setting.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"113-141"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300499","citationCount":"0","resultStr":"{\"title\":\"Calderón–Zygmund theory on some Lie groups of exponential growth\",\"authors\":\"Filippo De Mari,&nbsp;Matteo Levi,&nbsp;Matteo Monti,&nbsp;Maria Vallarino\",\"doi\":\"10.1002/mana.202300499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>=</mo>\\n <mi>N</mi>\\n <mo>⋊</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$G = N \\\\rtimes A$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> is a stratified Lie group and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>R</mi>\\n <mo>+</mo>\\n </msub>\\n </mrow>\\n <annotation>$A= \\\\mathbb {R}_+$</annotation>\\n </semantics></math> acts on <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> via automorphic dilations. We prove that the group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> has the Calderón–Zygmund property, in the sense of Hebisch and Steger, with respect to a family of flow measures and metrics. This generalizes in various directions previous works by Hebisch and Steger and Martini et al., and provides a new approach in the development of the Calderón–Zygmund theory in Lie groups of exponential growth. We also prove a weak-type (1,1) estimate for the Hardy–Littlewood maximal operator naturally arising in this setting.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 1\",\"pages\":\"113-141\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300499\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300499\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300499","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G = N∑A$ G = N \r * A$,其中N$ N$是一个分层李群,a = R +$ a = \mathbb {R}_+$通过自同构扩张作用于N$ N$。我们证明了群G$ G$在Hebisch和Steger意义上,对于一组流量度量和度量具有Calderón-Zygmund性质。这在各个方向上推广了Hebisch和Steger以及Martini等人之前的工作,并为指数增长李群Calderón-Zygmund理论的发展提供了新的途径。我们还证明了在这种情况下自然产生的Hardy-Littlewood极大算子的一个弱型(1,1)估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calderón–Zygmund theory on some Lie groups of exponential growth

Let G = N A $G = N \rtimes A$ , where N $N$ is a stratified Lie group and A = R + $A= \mathbb {R}_+$ acts on N $N$ via automorphic dilations. We prove that the group G $G$ has the Calderón–Zygmund property, in the sense of Hebisch and Steger, with respect to a family of flow measures and metrics. This generalizes in various directions previous works by Hebisch and Steger and Martini et al., and provides a new approach in the development of the Calderón–Zygmund theory in Lie groups of exponential growth. We also prove a weak-type (1,1) estimate for the Hardy–Littlewood maximal operator naturally arising in this setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信