残留(兽用)抗生素在化学暴露分析中的作用:目前进展和未来展望

IF 12 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Md Zakir Hossain, Max L. Feuerstein, Benedikt Warth
{"title":"残留(兽用)抗生素在化学暴露分析中的作用:目前进展和未来展望","authors":"Md Zakir Hossain,&nbsp;Max L. Feuerstein,&nbsp;Benedikt Warth","doi":"10.1111/1541-4337.70105","DOIUrl":null,"url":null,"abstract":"<p>Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography–mass spectrometry (LC–MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70105","citationCount":"0","resultStr":"{\"title\":\"The role of residual (veterinary) antibiotics in chemical exposome analysis: Current progress and future perspectives\",\"authors\":\"Md Zakir Hossain,&nbsp;Max L. Feuerstein,&nbsp;Benedikt Warth\",\"doi\":\"10.1111/1541-4337.70105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography–mass spectrometry (LC–MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.</p>\",\"PeriodicalId\":155,\"journal\":{\"name\":\"Comprehensive Reviews in Food Science and Food Safety\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Reviews in Food Science and Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70105\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70105","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类一生都暴露在环境和食品相关化学物质的复杂混合物中。暴露研究旨在全面探索慢性疾病的非遗传原因,即环境原因及其相互作用。残留抗生素可通过药物、动物源性食品、水产品或饮用水进入人体。在过去十年中,人类尿液中残留的抗生素水平很高,这表明在人群中经常接触抗生素。它们在多大程度上对人类健康造成风险仍存在争议。人体生物监测(HBM)旨在确定和量化人体标本中异种生物的浓度,并提供工具箱来监测不同化学物质的暴露。由于其对公共卫生的影响,在欧洲联盟和其他国家对列入优先事项的外源性药物进行常规监测。然而,抗生素作为一类重要的(食物来源的)外源性抗生素,在暴露组学的背景下仍未得到更好和更全面的了解。本文综述了与抗生素相关的HBM研究,现有的基于液相色谱-质谱(LC-MS)的分析方法,以及意外接触造成的潜在健康风险。通过使用多类别分析方法的常规HBM将抗生素纳入化学暴露体框架,将更好地了解毒理学或药理学混合效应,并最终了解化学暴露体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The role of residual (veterinary) antibiotics in chemical exposome analysis: Current progress and future perspectives

The role of residual (veterinary) antibiotics in chemical exposome analysis: Current progress and future perspectives

Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography–mass spectrometry (LC–MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.20
自引率
2.70%
发文量
182
期刊介绍: Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology. CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results. Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity. The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信