一种完全可降解、生物安全的超级电容器,用于储能装置的无害化处理

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2024-12-03 DOI:10.1002/eom2.12506
Chang Xu, Shiqiang Guan, Xijing Zhuang, Xufeng Dong
{"title":"一种完全可降解、生物安全的超级电容器,用于储能装置的无害化处理","authors":"Chang Xu,&nbsp;Shiqiang Guan,&nbsp;Xijing Zhuang,&nbsp;Xufeng Dong","doi":"10.1002/eom2.12506","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors show broad application prospects as promising energy supply units for future integrated or even implantable electronic devices, but their poor degradability and high biotoxicity severely limit their further development. Regarding this, future-oriented supercapacitors with fully degradable behavior and excellent biosafety have been prepared through the wide application of degradable polymers and a rational encapsulation and isolation strategy. The combination of self-supporting pulp fiber/graphene composite electrodes and guar gum gel electrolyte endows the devices with ideal rate performance and long lifetime. The devices demonstrate extremely low cytotoxicity and satisfactory biocompatibility. The implantation caused no significant rejection and did not affect the survival status of the SD rats, suggesting the possibility of powering implantable electronics. Notably, all components of the device (electrodes, electrolyte, substrate, and encapsulation materials) do not contain hazardous or non-degradable materials, allowing for true complete degradability. The preparation strategy and material selection in the study are expected to be generalized to a wide range of energy storage systems, providing some reference and guidance for the harmless disposal of energy storage devices and even microelectronics.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12506","citationCount":"0","resultStr":"{\"title\":\"A Fully Degradable, Bio-Safe Supercapacitor Targeting for Harmless Disposal of Energy Storage Devices\",\"authors\":\"Chang Xu,&nbsp;Shiqiang Guan,&nbsp;Xijing Zhuang,&nbsp;Xufeng Dong\",\"doi\":\"10.1002/eom2.12506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supercapacitors show broad application prospects as promising energy supply units for future integrated or even implantable electronic devices, but their poor degradability and high biotoxicity severely limit their further development. Regarding this, future-oriented supercapacitors with fully degradable behavior and excellent biosafety have been prepared through the wide application of degradable polymers and a rational encapsulation and isolation strategy. The combination of self-supporting pulp fiber/graphene composite electrodes and guar gum gel electrolyte endows the devices with ideal rate performance and long lifetime. The devices demonstrate extremely low cytotoxicity and satisfactory biocompatibility. The implantation caused no significant rejection and did not affect the survival status of the SD rats, suggesting the possibility of powering implantable electronics. Notably, all components of the device (electrodes, electrolyte, substrate, and encapsulation materials) do not contain hazardous or non-degradable materials, allowing for true complete degradability. The preparation strategy and material selection in the study are expected to be generalized to a wide range of energy storage systems, providing some reference and guidance for the harmless disposal of energy storage devices and even microelectronics.</p><p>\\n \\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12506\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器作为未来集成甚至植入式电子器件的有前途的能源供应单元,具有广阔的应用前景,但其降解性差和高生物毒性严重限制了其进一步发展。因此,通过可降解聚合物的广泛应用和合理的封装和隔离策略,可以制备出具有完全降解性能和优异生物安全性的未来超级电容器。自支撑纸浆纤维/石墨烯复合电极与瓜尔胶凝胶电解质的结合,使器件具有理想的倍率性能和较长的使用寿命。该装置具有极低的细胞毒性和令人满意的生物相容性。植入未引起明显的排斥反应,也未影响SD大鼠的生存状态,提示为植入式电子设备供电的可能性。值得注意的是,该器件的所有组件(电极、电解质、衬底和封装材料)不含有害或不可降解的材料,允许真正的完全降解。本研究的制备策略和材料选择有望推广到更广泛的储能系统,为储能器件乃至微电子的无害化处置提供一定的参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Fully Degradable, Bio-Safe Supercapacitor Targeting for Harmless Disposal of Energy Storage Devices

A Fully Degradable, Bio-Safe Supercapacitor Targeting for Harmless Disposal of Energy Storage Devices

Supercapacitors show broad application prospects as promising energy supply units for future integrated or even implantable electronic devices, but their poor degradability and high biotoxicity severely limit their further development. Regarding this, future-oriented supercapacitors with fully degradable behavior and excellent biosafety have been prepared through the wide application of degradable polymers and a rational encapsulation and isolation strategy. The combination of self-supporting pulp fiber/graphene composite electrodes and guar gum gel electrolyte endows the devices with ideal rate performance and long lifetime. The devices demonstrate extremely low cytotoxicity and satisfactory biocompatibility. The implantation caused no significant rejection and did not affect the survival status of the SD rats, suggesting the possibility of powering implantable electronics. Notably, all components of the device (electrodes, electrolyte, substrate, and encapsulation materials) do not contain hazardous or non-degradable materials, allowing for true complete degradability. The preparation strategy and material selection in the study are expected to be generalized to a wide range of energy storage systems, providing some reference and guidance for the harmless disposal of energy storage devices and even microelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信