多分辨率股骨近端骨支架植入后结构行为的比较

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jun Won Choi, Jung Jin Kim
{"title":"多分辨率股骨近端骨支架植入后结构行为的比较","authors":"Jun Won Choi,&nbsp;Jung Jin Kim","doi":"10.1002/cnm.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bone scaffolds are increasingly regarded as viable alternatives to autografts and allografts in clinical settings. However, their effectiveness can vary based on certain anatomical characteristics, highlighting the importance of image-based structural analysis. High-resolution imaging is crucial to accurately assess the performance of bone scaffolds. Despite this, the resolution of current clinical medical images is constrained by concerns regarding radiation exposure. The efficacy of these analyses can be improved by quantitatively evaluating the similarities and differences between low- and high-resolution images. This study quantitatively compared the structural behavior of bone scaffolds using both high- and low-resolution images. This study downscaled a high-resolution image, implanted a bone scaffold, and conducted finite element analysis. The findings suggest that the resolution needed for accurate structural analysis of skeletal images varies based on the implantation site of the scaffold. Additionally, it was found that the less influence the loading conditions have, the higher the resolution required to accurately assess the structural behavior.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Structural Behavior Following Bone Scaffold Implantation in Multi-Resolution Proximal Femur Images\",\"authors\":\"Jun Won Choi,&nbsp;Jung Jin Kim\",\"doi\":\"10.1002/cnm.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Bone scaffolds are increasingly regarded as viable alternatives to autografts and allografts in clinical settings. However, their effectiveness can vary based on certain anatomical characteristics, highlighting the importance of image-based structural analysis. High-resolution imaging is crucial to accurately assess the performance of bone scaffolds. Despite this, the resolution of current clinical medical images is constrained by concerns regarding radiation exposure. The efficacy of these analyses can be improved by quantitatively evaluating the similarities and differences between low- and high-resolution images. This study quantitatively compared the structural behavior of bone scaffolds using both high- and low-resolution images. This study downscaled a high-resolution image, implanted a bone scaffold, and conducted finite element analysis. The findings suggest that the resolution needed for accurate structural analysis of skeletal images varies based on the implantation site of the scaffold. Additionally, it was found that the less influence the loading conditions have, the higher the resolution required to accurately assess the structural behavior.</p>\\n </div>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

骨支架越来越被认为是临床环境中自体和同种异体移植的可行替代品。然而,它们的有效性可能因某些解剖特征而异,这突出了基于图像的结构分析的重要性。高分辨率成像对于准确评估骨支架的性能至关重要。尽管如此,目前临床医学图像的分辨率受到辐射暴露问题的限制。这些分析的有效性可以通过定量评估低分辨率和高分辨率图像之间的相似性和差异性来提高。本研究使用高分辨率和低分辨率图像定量比较骨支架的结构行为。本研究缩小高分辨率图像,植入骨支架,并进行有限元分析。研究结果表明,对骨骼图像进行精确结构分析所需的分辨率因支架植入位置的不同而不同。此外,还发现载荷条件的影响越小,准确评估结构性能所需的分辨率越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of Structural Behavior Following Bone Scaffold Implantation in Multi-Resolution Proximal Femur Images

Comparison of Structural Behavior Following Bone Scaffold Implantation in Multi-Resolution Proximal Femur Images

Bone scaffolds are increasingly regarded as viable alternatives to autografts and allografts in clinical settings. However, their effectiveness can vary based on certain anatomical characteristics, highlighting the importance of image-based structural analysis. High-resolution imaging is crucial to accurately assess the performance of bone scaffolds. Despite this, the resolution of current clinical medical images is constrained by concerns regarding radiation exposure. The efficacy of these analyses can be improved by quantitatively evaluating the similarities and differences between low- and high-resolution images. This study quantitatively compared the structural behavior of bone scaffolds using both high- and low-resolution images. This study downscaled a high-resolution image, implanted a bone scaffold, and conducted finite element analysis. The findings suggest that the resolution needed for accurate structural analysis of skeletal images varies based on the implantation site of the scaffold. Additionally, it was found that the less influence the loading conditions have, the higher the resolution required to accurately assess the structural behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信