作为镫骨手术虚拟测试环境的中耳和内耳耦合有限元模型

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
D. Burovikhin, M. Lauxmann
{"title":"作为镫骨手术虚拟测试环境的中耳和内耳耦合有限元模型","authors":"D. Burovikhin,&nbsp;M. Lauxmann","doi":"10.1002/cnm.70013","DOIUrl":null,"url":null,"abstract":"<p>In order to evaluate the performance of different types of middle-ear prostheses, a model of human ear was developed. The model was created using finite element (FE) method with the ossicles modeled as rigid bodies. First, the middle-ear FE model was developed and validated using the middle-ear transfer function measurements available in literature including pathological cases. Then, the inner-ear FE model was developed and validated using tonotopy, impedance, and relative BM motion level curves from literature. Both models are based on preexisting research with some improvements and were combined into one coupled FE model. The stapes in the coupled FE ear model was replaced with a model of a stapes prosthesis to create a reconstructed ear model that can be used to estimate how different types of stapes protheses perform relative to each other as well as to the natural ear. The influence of the diameter of the prosthesis as well as the influence of the sealing and opening of the gap in the footplate were investigated along with different measures such as maximum basilar membrane displacement, intracochlear pressure, pressure in scala vestibuli, oval and round window volume displacements, and prosthesis displacement. This will help in designing new innovative types of stapes prostheses or any other type of middle-ear prostheses, as well as to improve the ones that are already available on the market.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70013","citationCount":"0","resultStr":"{\"title\":\"Coupled Finite Element Model of the Middle and Inner Ear as Virtual Test Environment for Stapes Surgery\",\"authors\":\"D. Burovikhin,&nbsp;M. Lauxmann\",\"doi\":\"10.1002/cnm.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to evaluate the performance of different types of middle-ear prostheses, a model of human ear was developed. The model was created using finite element (FE) method with the ossicles modeled as rigid bodies. First, the middle-ear FE model was developed and validated using the middle-ear transfer function measurements available in literature including pathological cases. Then, the inner-ear FE model was developed and validated using tonotopy, impedance, and relative BM motion level curves from literature. Both models are based on preexisting research with some improvements and were combined into one coupled FE model. The stapes in the coupled FE ear model was replaced with a model of a stapes prosthesis to create a reconstructed ear model that can be used to estimate how different types of stapes protheses perform relative to each other as well as to the natural ear. The influence of the diameter of the prosthesis as well as the influence of the sealing and opening of the gap in the footplate were investigated along with different measures such as maximum basilar membrane displacement, intracochlear pressure, pressure in scala vestibuli, oval and round window volume displacements, and prosthesis displacement. This will help in designing new innovative types of stapes prostheses or any other type of middle-ear prostheses, as well as to improve the ones that are already available on the market.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70013\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了评估不同类型的中耳假体的性能,建立了人耳模型。采用有限元法建立模型,将小听骨建模为刚体。首先,利用文献中包括病理病例在内的中耳传递函数测量数据,建立并验证了中耳有限元模型。然后,利用文献中的拓扑、阻抗和相对BM运动水平曲线建立内耳有限元模型并进行验证。这两个模型都是在已有研究的基础上进行了一些改进,并合并为一个耦合有限元模型。将耦合有限元耳模型中的镫骨替换为镫骨假体模型,创建重建耳模型,该模型可用于估计不同类型的镫骨假体相对于彼此以及相对于自然耳的表现。采用最大基底膜位移、耳蜗内压力、前庭压力、椭圆窗和圆窗容积位移、假体位移等不同测量方法,研究假体直径的影响以及足板间隙密封和开口的影响。这将有助于设计新的创新型镫骨假体或任何其他类型的中耳假体,以及改进市场上已有的假体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coupled Finite Element Model of the Middle and Inner Ear as Virtual Test Environment for Stapes Surgery

Coupled Finite Element Model of the Middle and Inner Ear as Virtual Test Environment for Stapes Surgery

In order to evaluate the performance of different types of middle-ear prostheses, a model of human ear was developed. The model was created using finite element (FE) method with the ossicles modeled as rigid bodies. First, the middle-ear FE model was developed and validated using the middle-ear transfer function measurements available in literature including pathological cases. Then, the inner-ear FE model was developed and validated using tonotopy, impedance, and relative BM motion level curves from literature. Both models are based on preexisting research with some improvements and were combined into one coupled FE model. The stapes in the coupled FE ear model was replaced with a model of a stapes prosthesis to create a reconstructed ear model that can be used to estimate how different types of stapes protheses perform relative to each other as well as to the natural ear. The influence of the diameter of the prosthesis as well as the influence of the sealing and opening of the gap in the footplate were investigated along with different measures such as maximum basilar membrane displacement, intracochlear pressure, pressure in scala vestibuli, oval and round window volume displacements, and prosthesis displacement. This will help in designing new innovative types of stapes prostheses or any other type of middle-ear prostheses, as well as to improve the ones that are already available on the market.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信