通过综合优化提高rb2sni6基钙钛矿太阳能电池的效率和性能:数值研究

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Minhaz Ul Alam, Md. Kamrul Islam Shifat, Jibon Krishna Modak, Md. Tarekuzzaman, Md. Ismail Haque, Md. Rasheduzzaman, Md Abdul Qader, Riazul Islam, Yasir Arafat, Md. Zahid Hasan
{"title":"通过综合优化提高rb2sni6基钙钛矿太阳能电池的效率和性能:数值研究","authors":"Minhaz Ul Alam,&nbsp;Md. Kamrul Islam Shifat,&nbsp;Jibon Krishna Modak,&nbsp;Md. Tarekuzzaman,&nbsp;Md. Ismail Haque,&nbsp;Md. Rasheduzzaman,&nbsp;Md Abdul Qader,&nbsp;Riazul Islam,&nbsp;Yasir Arafat,&nbsp;Md. Zahid Hasan","doi":"10.1007/s10825-024-02276-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we explored the optimal performance of perovskite solar cells (PSCs) using the tin-halide material Rb<sub>2</sub>SnI<sub>6</sub>. This study focuses exclusively on the electrical properties of the devices, as simulated using SCAPS-1D software (solar capacitance simulator). The SCAPS-1D was employed to improve the device in the Rb<sub>2</sub>SnI<sub>6</sub>-based PSC, which utilized tungsten disulfide (WS<sub>2</sub>) as the electron transport layer and cadmium telluride (CdTe) as the hole transport layer (HTL). To identify the most suitable electron transport layer (ETL), we initially investigated WS<sub>2</sub>, SnS<sub>2</sub>, PCBM, and C<sub>60</sub>. The ITO/WS<sub>2</sub>/ Rb<sub>2</sub>SnI<sub>6</sub>/CdTe/Ni structure proved to be the most effective ETL after extensive investigation, demonstrating a power conversion efficiency (PCE) of 24.95%, a Voc of 1.0896 V, a Jsc of 44.6795 mA cm<sup>2</sup>, and an FF of 82.71%. Subsequently, we evaluated the impact of the absorber thickness, ETL thickness, and defect density on the device’s effectiveness in the Rb<sub>2</sub>SnI<sub>6</sub>, WS<sub>2</sub>, and CdTe layers. We further investigated the effect of adjusting the interfacial defect densities at the CdTe/Rb<sub>2</sub>SnI<sub>6</sub> and Rb<sub>2</sub>SnI<sub>6</sub>/WS<sub>2</sub> interfaces to optimize the device’s capabilities further. Additionally, we examined the proposed PSC’s quantum efficiency (QE), current density–voltage (J-V), shunt resistance, series resistance, capacitance–voltage, working temperature, and generation-recombination parameters. The results of these simulations provide valuable information for the excellent scientific fabrication of an inorganic PSC that is based on Rb<sub>2</sub>SnI<sub>6</sub>.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the efficiency and performance of Rb2SnI6-based perovskite solar cells through comprehensive optimization: a numerical study\",\"authors\":\"Minhaz Ul Alam,&nbsp;Md. Kamrul Islam Shifat,&nbsp;Jibon Krishna Modak,&nbsp;Md. Tarekuzzaman,&nbsp;Md. Ismail Haque,&nbsp;Md. Rasheduzzaman,&nbsp;Md Abdul Qader,&nbsp;Riazul Islam,&nbsp;Yasir Arafat,&nbsp;Md. Zahid Hasan\",\"doi\":\"10.1007/s10825-024-02276-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we explored the optimal performance of perovskite solar cells (PSCs) using the tin-halide material Rb<sub>2</sub>SnI<sub>6</sub>. This study focuses exclusively on the electrical properties of the devices, as simulated using SCAPS-1D software (solar capacitance simulator). The SCAPS-1D was employed to improve the device in the Rb<sub>2</sub>SnI<sub>6</sub>-based PSC, which utilized tungsten disulfide (WS<sub>2</sub>) as the electron transport layer and cadmium telluride (CdTe) as the hole transport layer (HTL). To identify the most suitable electron transport layer (ETL), we initially investigated WS<sub>2</sub>, SnS<sub>2</sub>, PCBM, and C<sub>60</sub>. The ITO/WS<sub>2</sub>/ Rb<sub>2</sub>SnI<sub>6</sub>/CdTe/Ni structure proved to be the most effective ETL after extensive investigation, demonstrating a power conversion efficiency (PCE) of 24.95%, a Voc of 1.0896 V, a Jsc of 44.6795 mA cm<sup>2</sup>, and an FF of 82.71%. Subsequently, we evaluated the impact of the absorber thickness, ETL thickness, and defect density on the device’s effectiveness in the Rb<sub>2</sub>SnI<sub>6</sub>, WS<sub>2</sub>, and CdTe layers. We further investigated the effect of adjusting the interfacial defect densities at the CdTe/Rb<sub>2</sub>SnI<sub>6</sub> and Rb<sub>2</sub>SnI<sub>6</sub>/WS<sub>2</sub> interfaces to optimize the device’s capabilities further. Additionally, we examined the proposed PSC’s quantum efficiency (QE), current density–voltage (J-V), shunt resistance, series resistance, capacitance–voltage, working temperature, and generation-recombination parameters. The results of these simulations provide valuable information for the excellent scientific fabrication of an inorganic PSC that is based on Rb<sub>2</sub>SnI<sub>6</sub>.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02276-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02276-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探索了使用卤化锡材料Rb2SnI6的钙钛矿太阳能电池(PSCs)的最佳性能。本研究专门关注器件的电学特性,使用SCAPS-1D软件(太阳能电容模拟器)进行模拟。在以二硫化钨(WS2)为电子传输层、碲化镉(CdTe)为空穴传输层的rb2sni6基PSC中,利用SCAPS-1D对器件进行了改进。为了确定最合适的电子传递层(ETL),我们首先研究了WS2、SnS2、PCBM和C60。经过广泛的研究,ITO/WS2/ Rb2SnI6/CdTe/Ni结构被证明是最有效的ETL,其功率转换效率(PCE)为24.95%,Voc为1.0896 V, Jsc为44.6795 mA cm2, FF为82.71%。随后,我们评估了吸收层厚度、ETL厚度和缺陷密度对器件在Rb2SnI6、WS2和CdTe层中的有效性的影响。我们进一步研究了调整CdTe/Rb2SnI6和Rb2SnI6/WS2接口缺陷密度的影响,以进一步优化器件的性能。此外,我们还研究了所提出的PSC的量子效率(QE)、电流密度电压(J-V)、并联电阻、串联电阻、电容电压、工作温度和发电重组参数。这些模拟结果为基于Rb2SnI6的无机PSC的优异科学制备提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the efficiency and performance of Rb2SnI6-based perovskite solar cells through comprehensive optimization: a numerical study

In this study, we explored the optimal performance of perovskite solar cells (PSCs) using the tin-halide material Rb2SnI6. This study focuses exclusively on the electrical properties of the devices, as simulated using SCAPS-1D software (solar capacitance simulator). The SCAPS-1D was employed to improve the device in the Rb2SnI6-based PSC, which utilized tungsten disulfide (WS2) as the electron transport layer and cadmium telluride (CdTe) as the hole transport layer (HTL). To identify the most suitable electron transport layer (ETL), we initially investigated WS2, SnS2, PCBM, and C60. The ITO/WS2/ Rb2SnI6/CdTe/Ni structure proved to be the most effective ETL after extensive investigation, demonstrating a power conversion efficiency (PCE) of 24.95%, a Voc of 1.0896 V, a Jsc of 44.6795 mA cm2, and an FF of 82.71%. Subsequently, we evaluated the impact of the absorber thickness, ETL thickness, and defect density on the device’s effectiveness in the Rb2SnI6, WS2, and CdTe layers. We further investigated the effect of adjusting the interfacial defect densities at the CdTe/Rb2SnI6 and Rb2SnI6/WS2 interfaces to optimize the device’s capabilities further. Additionally, we examined the proposed PSC’s quantum efficiency (QE), current density–voltage (J-V), shunt resistance, series resistance, capacitance–voltage, working temperature, and generation-recombination parameters. The results of these simulations provide valuable information for the excellent scientific fabrication of an inorganic PSC that is based on Rb2SnI6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信