球面上n -涡旋问题相对平衡态稳定分支的确定

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
K. Constantineau, C. García-Azpeitia, L. C. García-Naranjo, J.-P. Lessard
{"title":"球面上n -涡旋问题相对平衡态稳定分支的确定","authors":"K. Constantineau,&nbsp;C. García-Azpeitia,&nbsp;L. C. García-Naranjo,&nbsp;J.-P. Lessard","doi":"10.1007/s00220-024-05220-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the <i>N</i>-vortex problem on the sphere assuming that all vorticities have equal strength. We investigate relative equilibria (RE) consisting of <i>n</i> latitudinal rings which are uniformly rotating about the vertical axis with angular velocity <span>\\(\\omega \\)</span>. Each such ring contains <i>m</i> vortices placed at the vertices of a concentric regular polygon and we allow the presence of additional vortices at the poles. We develop a framework to prove existence and orbital stability of branches of RE of this type parametrised by <span>\\(\\omega \\)</span>. Such framework is implemented to rigorously determine and prove stability of segments of branches using computer-assisted proofs. This approach circumvents the analytical complexities that arise when the number of rings <span>\\(n\\ge 2\\)</span> and allows us to give several new rigorous results. We exemplify our method providing new contributions consisting of the determination of enclosures and proofs of stability of several equilibria and RE for <span>\\(5\\le N\\le 12\\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Stable Branches of Relative Equilibria of the N-Vortex Problem on the Sphere\",\"authors\":\"K. Constantineau,&nbsp;C. García-Azpeitia,&nbsp;L. C. García-Naranjo,&nbsp;J.-P. Lessard\",\"doi\":\"10.1007/s00220-024-05220-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the <i>N</i>-vortex problem on the sphere assuming that all vorticities have equal strength. We investigate relative equilibria (RE) consisting of <i>n</i> latitudinal rings which are uniformly rotating about the vertical axis with angular velocity <span>\\\\(\\\\omega \\\\)</span>. Each such ring contains <i>m</i> vortices placed at the vertices of a concentric regular polygon and we allow the presence of additional vortices at the poles. We develop a framework to prove existence and orbital stability of branches of RE of this type parametrised by <span>\\\\(\\\\omega \\\\)</span>. Such framework is implemented to rigorously determine and prove stability of segments of branches using computer-assisted proofs. This approach circumvents the analytical complexities that arise when the number of rings <span>\\\\(n\\\\ge 2\\\\)</span> and allows us to give several new rigorous results. We exemplify our method providing new contributions consisting of the determination of enclosures and proofs of stability of several equilibria and RE for <span>\\\\(5\\\\le N\\\\le 12\\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05220-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05220-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑球面上的n涡问题,假设所有的涡强度相等。我们研究了由n个沿垂直轴以角速度\(\omega \)均匀旋转的纬向环组成的相对平衡(RE)。每个这样的环包含m个放置在同心正多边形顶点的漩涡,我们允许在极点存在额外的漩涡。我们建立了一个框架来证明这类用\(\omega \)参数化的RE分支的存在性和轨道稳定性。实现了该框架,利用计算机辅助证明对支路段的稳定性进行了严格的确定和证明。这种方法避免了环数\(n\ge 2\)时出现的分析复杂性,并允许我们给出几个新的严格结果。我们举例说明了我们的方法提供了新的贡献,包括确定外壳和证明几个平衡和RE的稳定性\(5\le N\le 12\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Stable Branches of Relative Equilibria of the N-Vortex Problem on the Sphere

We consider the N-vortex problem on the sphere assuming that all vorticities have equal strength. We investigate relative equilibria (RE) consisting of n latitudinal rings which are uniformly rotating about the vertical axis with angular velocity \(\omega \). Each such ring contains m vortices placed at the vertices of a concentric regular polygon and we allow the presence of additional vortices at the poles. We develop a framework to prove existence and orbital stability of branches of RE of this type parametrised by \(\omega \). Such framework is implemented to rigorously determine and prove stability of segments of branches using computer-assisted proofs. This approach circumvents the analytical complexities that arise when the number of rings \(n\ge 2\) and allows us to give several new rigorous results. We exemplify our method providing new contributions consisting of the determination of enclosures and proofs of stability of several equilibria and RE for \(5\le N\le 12\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信