十二烷基硫酸钠和十六烷基三甲基溴化铵表面活性剂对锂离子电池多孔碳阳极电化学性能的协同效应

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Y Guner, K B Dermenci, A T Guner, S Turan
{"title":"十二烷基硫酸钠和十六烷基三甲基溴化铵表面活性剂对锂离子电池多孔碳阳极电化学性能的协同效应","authors":"Y Guner,&nbsp;K B Dermenci,&nbsp;A T Guner,&nbsp;S Turan","doi":"10.1007/s12034-024-03393-z","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-derived materials are suitable for use as anodes in lithium-ion batteries due to low production cost and abundance. However, there is a need to improve the electrochemical performance with various modifications due to the limited capacity. In this study, a porous carbon is modified with anionic sodium dodecyl sulphate (SDS) and cationic cetyl trimethyl ammonium bromide (CTAB) surfactants and prepared as an anode for use in lithium-ion batteries. Morphological and structural properties change with the addition of surfactants, and the use of only one or two of them together has different effects. The morphology formed by adding only SDS is homogeneous and only CTAB is heterogeneous. When both surfactants are used SDS also provides homogeneous dispersion of CTAB. The changes in <i>I</i><sub>2D</sub>/<i>I</i><sub>G</sub> and <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> ratios obtained from Raman analyses show that the layer arrangement and the ratio of defects in the structure have changed. Electrochemical performances with different surfactant amounts are compared by using charge/discharge tests, cyclic voltammetric tests and differential capacity analysis (d<i>Q</i>/d<i>V</i>). The combined use of SDS and CTAB creates a synergetic effect (catanionic) and increases the capacity nearly 1.5 times by improving wetting, amount of lithium-ion storage areas and reducing the irreversible loss of capacity caused by solid electrolyte interface.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catanionic synergetic effect of sodium dodecyl sulphate and cetyl trimethyl ammonium bromide surfactants on the electrochemical performance of porous carbon anodes in lithium-ion batteries\",\"authors\":\"Y Guner,&nbsp;K B Dermenci,&nbsp;A T Guner,&nbsp;S Turan\",\"doi\":\"10.1007/s12034-024-03393-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon-derived materials are suitable for use as anodes in lithium-ion batteries due to low production cost and abundance. However, there is a need to improve the electrochemical performance with various modifications due to the limited capacity. In this study, a porous carbon is modified with anionic sodium dodecyl sulphate (SDS) and cationic cetyl trimethyl ammonium bromide (CTAB) surfactants and prepared as an anode for use in lithium-ion batteries. Morphological and structural properties change with the addition of surfactants, and the use of only one or two of them together has different effects. The morphology formed by adding only SDS is homogeneous and only CTAB is heterogeneous. When both surfactants are used SDS also provides homogeneous dispersion of CTAB. The changes in <i>I</i><sub>2D</sub>/<i>I</i><sub>G</sub> and <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> ratios obtained from Raman analyses show that the layer arrangement and the ratio of defects in the structure have changed. Electrochemical performances with different surfactant amounts are compared by using charge/discharge tests, cyclic voltammetric tests and differential capacity analysis (d<i>Q</i>/d<i>V</i>). The combined use of SDS and CTAB creates a synergetic effect (catanionic) and increases the capacity nearly 1.5 times by improving wetting, amount of lithium-ion storage areas and reducing the irreversible loss of capacity caused by solid electrolyte interface.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03393-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03393-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳衍生材料因其生产成本低、储量丰富而适合用作锂离子电池的阳极。然而,由于容量有限,需要通过各种改性来提高电化学性能。在本研究中,用阴离子十二烷基硫酸钠(SDS)和阳离子十六烷基三甲基溴化铵(CTAB)表面活性剂对多孔碳进行改性,制备了用于锂离子电池的阳极。表面活性剂的加入会改变材料的形态和结构性质,其中一种或两种表面活性剂一起使用效果不同。加入SDS形成的形貌为均相,加入CTAB形成的形貌为非均相。当两种表面活性剂同时使用时,SDS也提供了均匀的CTAB分散体。拉曼分析得到的I2D/IG和ID/IG比值的变化表明,结构中的层排列和缺陷比例发生了变化。通过充放电试验、循环伏安试验和差分容量分析(dQ/dV),比较了不同表面活性剂用量下的电化学性能。SDS和CTAB的联合使用产生了协同效应(catanonic),通过改善润湿性、锂离子存储区域数量和减少固体电解质界面造成的不可逆容量损失,使容量增加了近1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catanionic synergetic effect of sodium dodecyl sulphate and cetyl trimethyl ammonium bromide surfactants on the electrochemical performance of porous carbon anodes in lithium-ion batteries

Carbon-derived materials are suitable for use as anodes in lithium-ion batteries due to low production cost and abundance. However, there is a need to improve the electrochemical performance with various modifications due to the limited capacity. In this study, a porous carbon is modified with anionic sodium dodecyl sulphate (SDS) and cationic cetyl trimethyl ammonium bromide (CTAB) surfactants and prepared as an anode for use in lithium-ion batteries. Morphological and structural properties change with the addition of surfactants, and the use of only one or two of them together has different effects. The morphology formed by adding only SDS is homogeneous and only CTAB is heterogeneous. When both surfactants are used SDS also provides homogeneous dispersion of CTAB. The changes in I2D/IG and ID/IG ratios obtained from Raman analyses show that the layer arrangement and the ratio of defects in the structure have changed. Electrochemical performances with different surfactant amounts are compared by using charge/discharge tests, cyclic voltammetric tests and differential capacity analysis (dQ/dV). The combined use of SDS and CTAB creates a synergetic effect (catanionic) and increases the capacity nearly 1.5 times by improving wetting, amount of lithium-ion storage areas and reducing the irreversible loss of capacity caused by solid electrolyte interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信