表面活性剂帮助油滴脱离固体石英衬底

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Chong-Jiang Lv, Fu-Xin Ma, Hui Li, Xiu Yue, Akram Yasin, Bin Hao, Peng-Cheng Ma
{"title":"表面活性剂帮助油滴脱离固体石英衬底","authors":"Chong-Jiang Lv,&nbsp;Fu-Xin Ma,&nbsp;Hui Li,&nbsp;Xiu Yue,&nbsp;Akram Yasin,&nbsp;Bin Hao,&nbsp;Peng-Cheng Ma","doi":"10.1007/s00396-024-05342-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the effect of surfactant type (cationic, anionic, nonionic, and zwitterionic) on the detachment of hexadecane droplets from the quartz surface was investigated. The results indicated that the oil detachment performance was controlled by the adsorption behavior of surfactant molecules at the interface between the solid and liquid phases, which could alter the solid–liquid interfacial tension (IFT). In the cationic solution, IFTs of solid-oil and solid-water decreased and increased, respectively, ascribed to the electrostatic attraction occurring between the positively charged hydrophilic group and the negatively charged quartz surface. Conversely, in the anionic solution, the anionic surfactant with a negative head group increased the oil-solid IFT because of its electrostatic repulsion with the quartz surface, increasing the oil contact angle and subsequently oil droplet detachment under the hydrodynamic effect. In addition, the results obtained from the adhesive force test showed that nonionic and zwitterionic surfactants had the capability of preventing the re-adhesion of solid and oil, whereas the anionic surfactant had the best performance among the four types of surfactant for oil detachment from quartz surface.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 2","pages":"175 - 184"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfactant-assisted detachment of oil droplet from the solid quartz substrate in water\",\"authors\":\"Chong-Jiang Lv,&nbsp;Fu-Xin Ma,&nbsp;Hui Li,&nbsp;Xiu Yue,&nbsp;Akram Yasin,&nbsp;Bin Hao,&nbsp;Peng-Cheng Ma\",\"doi\":\"10.1007/s00396-024-05342-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the effect of surfactant type (cationic, anionic, nonionic, and zwitterionic) on the detachment of hexadecane droplets from the quartz surface was investigated. The results indicated that the oil detachment performance was controlled by the adsorption behavior of surfactant molecules at the interface between the solid and liquid phases, which could alter the solid–liquid interfacial tension (IFT). In the cationic solution, IFTs of solid-oil and solid-water decreased and increased, respectively, ascribed to the electrostatic attraction occurring between the positively charged hydrophilic group and the negatively charged quartz surface. Conversely, in the anionic solution, the anionic surfactant with a negative head group increased the oil-solid IFT because of its electrostatic repulsion with the quartz surface, increasing the oil contact angle and subsequently oil droplet detachment under the hydrodynamic effect. In addition, the results obtained from the adhesive force test showed that nonionic and zwitterionic surfactants had the capability of preventing the re-adhesion of solid and oil, whereas the anionic surfactant had the best performance among the four types of surfactant for oil detachment from quartz surface.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"303 2\",\"pages\":\"175 - 184\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05342-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05342-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了表面活性剂类型(阳离子型、阴离子型、非离子型和两性离子型)对十六烷液滴从石英表面分离的影响。结果表明,表面活性剂分子在固液界面的吸附行为控制了油的剥离性能,从而改变了固液界面张力(IFT)。在阳离子溶液中,固体油和固体水的ift分别减小和增大,这是由于带正电的亲水基团与带负电的石英表面之间发生静电吸引。相反,在阴离子溶液中,具有负头基的阴离子表面活性剂由于其与石英表面的静电斥力,增加了油的接触角,从而使油滴在流体动力作用下脱离。附着力测试结果表明,非离子表面活性剂和两性离子表面活性剂具有防止固体与油的再粘附的能力,而阴离子表面活性剂在四种表面活性剂中对石英表面的脱油效果最好。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surfactant-assisted detachment of oil droplet from the solid quartz substrate in water

Surfactant-assisted detachment of oil droplet from the solid quartz substrate in water

In this paper, the effect of surfactant type (cationic, anionic, nonionic, and zwitterionic) on the detachment of hexadecane droplets from the quartz surface was investigated. The results indicated that the oil detachment performance was controlled by the adsorption behavior of surfactant molecules at the interface between the solid and liquid phases, which could alter the solid–liquid interfacial tension (IFT). In the cationic solution, IFTs of solid-oil and solid-water decreased and increased, respectively, ascribed to the electrostatic attraction occurring between the positively charged hydrophilic group and the negatively charged quartz surface. Conversely, in the anionic solution, the anionic surfactant with a negative head group increased the oil-solid IFT because of its electrostatic repulsion with the quartz surface, increasing the oil contact angle and subsequently oil droplet detachment under the hydrodynamic effect. In addition, the results obtained from the adhesive force test showed that nonionic and zwitterionic surfactants had the capability of preventing the re-adhesion of solid and oil, whereas the anionic surfactant had the best performance among the four types of surfactant for oil detachment from quartz surface.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信