Charles R. Johnson, António Leal-Duarte, Carlos M. Saiago
{"title":"具有给定图的厄米矩阵中特征值的最大多重性的基本图","authors":"Charles R. Johnson, António Leal-Duarte, Carlos M. Saiago","doi":"10.1007/s43036-025-00420-6","DOIUrl":null,"url":null,"abstract":"<div><p>Our purpose is to identify the graphs that are “fundamental” for the maximum multiplicity problem for Hermitian matrices with a given undirected simple graph. Like paths for trees, these are the special graphs to which the maximum multiplicity problem may be reduced. These are the graphs for which maximum multiplicity implies that all vertices are downers. Examples include cycles and complete graphs, and several more are identified, using the theory developed herein. All the unicyclic graphs that are fundamental, are explicitly identified. We also list those graphs with two edges added to a tree, and their maximum multiplicities, which we have found so far to be fundamental. A formula for maximum multiplicity is given based on fundamental graphs.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-025-00420-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Fundamental graphs for the maximum multiplicity of an eigenvalue among Hermitian matrices with a given graph\",\"authors\":\"Charles R. Johnson, António Leal-Duarte, Carlos M. Saiago\",\"doi\":\"10.1007/s43036-025-00420-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our purpose is to identify the graphs that are “fundamental” for the maximum multiplicity problem for Hermitian matrices with a given undirected simple graph. Like paths for trees, these are the special graphs to which the maximum multiplicity problem may be reduced. These are the graphs for which maximum multiplicity implies that all vertices are downers. Examples include cycles and complete graphs, and several more are identified, using the theory developed herein. All the unicyclic graphs that are fundamental, are explicitly identified. We also list those graphs with two edges added to a tree, and their maximum multiplicities, which we have found so far to be fundamental. A formula for maximum multiplicity is given based on fundamental graphs.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-025-00420-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-025-00420-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00420-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fundamental graphs for the maximum multiplicity of an eigenvalue among Hermitian matrices with a given graph
Our purpose is to identify the graphs that are “fundamental” for the maximum multiplicity problem for Hermitian matrices with a given undirected simple graph. Like paths for trees, these are the special graphs to which the maximum multiplicity problem may be reduced. These are the graphs for which maximum multiplicity implies that all vertices are downers. Examples include cycles and complete graphs, and several more are identified, using the theory developed herein. All the unicyclic graphs that are fundamental, are explicitly identified. We also list those graphs with two edges added to a tree, and their maximum multiplicities, which we have found so far to be fundamental. A formula for maximum multiplicity is given based on fundamental graphs.