可见光下具有选择性脱氮性能的表面分子印迹光催化剂POPD/Bi2O3/CeO2的制备

IF 2.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zuchao Meng, Mengfan Cui, Yingying Li, Jie Xiang, Tianwen Wang
{"title":"可见光下具有选择性脱氮性能的表面分子印迹光催化剂POPD/Bi2O3/CeO2的制备","authors":"Zuchao Meng,&nbsp;Mengfan Cui,&nbsp;Yingying Li,&nbsp;Jie Xiang,&nbsp;Tianwen Wang","doi":"10.1007/s11164-024-05483-3","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing photocatalytic selectivity is essential for the effective and efficient utilization of catalysts. In this study, a molecularly imprinted polymer POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub>, designated as MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub>, was successfully synthesized via photopolymerization using pyridine as a template. The resulting MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> was characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N₂ adsorption–desorption isotherms, and UV–vis diffuse reflectance spectroscopy. MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> exhibited enhanced charge transfer and efficient separation of photogenerated carriers, as confirmed by photoluminescence measurements, electrochemical impedance spectroscopy analysis, and photocurrent response (<i>I</i>–<i>t</i>) curve evaluations. When the concentration of pyridine in simulated oil reached 80 µg/g, with an amount of 1.6 g/L for MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> and an illumination time of 120 min, the degradation rate of pyridine achieved 80%, which is 1.57 times greater than that observed using NMIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub>. After an adsorption for 30 min, MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> exhibited the adsorption capacity of 5 mg/g, attributed to the large number of molecularly imprinted pores on its surface. In various mixed systems, the selectivity coefficients for pyridine using MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> consistently exceeded 1.5, which can be attributed to the selective adsorption properties of the imprinted pores within the polymers that preferentially recognize and remove pyridine. Furthermore, after five cycles, the photocatalytic degradation rate of pyridine by MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> can still reach 77%, indicating that MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> possesses good stability. Trapping experiments demonstrated that superoxide radicals (·O<sub>2</sub><sup>−</sup>) and holes (h<sup>+</sup>) were the predominant active species in photocatalytic reactions. Additionally, a proposed mechanism for photocatalytic denitrification utilizing MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> was presented. This study provides a promising strategy for designing Bi-based molecular imprinting photocatalysts aimed at efficiently removing low-concentration, highly toxic target pollutants from mixed samples.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 2","pages":"971 - 994"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of surface molecularly imprinted photocatalyst POPD/Bi2O3/CeO2 with selective denitrification performance under visible light irradiation\",\"authors\":\"Zuchao Meng,&nbsp;Mengfan Cui,&nbsp;Yingying Li,&nbsp;Jie Xiang,&nbsp;Tianwen Wang\",\"doi\":\"10.1007/s11164-024-05483-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhancing photocatalytic selectivity is essential for the effective and efficient utilization of catalysts. In this study, a molecularly imprinted polymer POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub>, designated as MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub>, was successfully synthesized via photopolymerization using pyridine as a template. The resulting MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> was characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N₂ adsorption–desorption isotherms, and UV–vis diffuse reflectance spectroscopy. MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> exhibited enhanced charge transfer and efficient separation of photogenerated carriers, as confirmed by photoluminescence measurements, electrochemical impedance spectroscopy analysis, and photocurrent response (<i>I</i>–<i>t</i>) curve evaluations. When the concentration of pyridine in simulated oil reached 80 µg/g, with an amount of 1.6 g/L for MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> and an illumination time of 120 min, the degradation rate of pyridine achieved 80%, which is 1.57 times greater than that observed using NMIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub>. After an adsorption for 30 min, MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> exhibited the adsorption capacity of 5 mg/g, attributed to the large number of molecularly imprinted pores on its surface. In various mixed systems, the selectivity coefficients for pyridine using MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> consistently exceeded 1.5, which can be attributed to the selective adsorption properties of the imprinted pores within the polymers that preferentially recognize and remove pyridine. Furthermore, after five cycles, the photocatalytic degradation rate of pyridine by MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> can still reach 77%, indicating that MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> possesses good stability. Trapping experiments demonstrated that superoxide radicals (·O<sub>2</sub><sup>−</sup>) and holes (h<sup>+</sup>) were the predominant active species in photocatalytic reactions. Additionally, a proposed mechanism for photocatalytic denitrification utilizing MIP-POPD/Bi<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> was presented. This study provides a promising strategy for designing Bi-based molecular imprinting photocatalysts aimed at efficiently removing low-concentration, highly toxic target pollutants from mixed samples.</p></div>\",\"PeriodicalId\":753,\"journal\":{\"name\":\"Research on Chemical Intermediates\",\"volume\":\"51 2\",\"pages\":\"971 - 994\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research on Chemical Intermediates\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11164-024-05483-3\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05483-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高光催化选择性是有效利用催化剂的关键。本研究以吡啶为模板,通过光聚合法制备了分子印迹聚合物POPD/Bi2O3/CeO2,命名为MIP-POPD/Bi2O3/CeO2。通过傅里叶变换红外光谱、扫描电镜、x射线衍射、x射线光电子能谱、N₂吸附-解吸等温线和紫外-可见漫反射光谱对所得MIP-POPD/Bi2O3/CeO2进行了表征。通过光致发光测量、电化学阻抗谱分析和光电流响应(I-t)曲线评价证实,MIP-POPD/Bi2O3/CeO2表现出增强的电荷转移和光生成载流子的有效分离。当模拟油中吡啶的浓度达到80µg/g, MIP-POPD/Bi2O3/CeO2用量为1.6 g/L,光照时间为120 min时,吡啶的降解率达到80%,是NMIP-POPD/Bi2O3/CeO2的1.57倍。经过30 min的吸附,MIP-POPD/Bi2O3/CeO2的吸附容量为5 mg/g,这是由于MIP-POPD/Bi2O3/CeO2表面有大量的分子印迹孔。在各种混合体系中,MIP-POPD/Bi2O3/CeO2对吡啶的选择性系数始终超过1.5,这可归因于聚合物内部印迹孔的选择性吸附特性,它们优先识别和去除吡啶。此外,经过5个循环后,MIP-POPD/Bi2O3/CeO2光催化降解吡啶的率仍可达到77%,表明MIP-POPD/Bi2O3/CeO2具有良好的稳定性。捕集实验表明,超氧自由基(·O2−)和空穴(h+)是光催化反应的主要活性物质。此外,提出了MIP-POPD/Bi2O3/CeO2光催化脱氮机理。该研究为设计高效去除混合样品中低浓度、高毒性目标污染物的铋基分子印迹光催化剂提供了一种有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of surface molecularly imprinted photocatalyst POPD/Bi2O3/CeO2 with selective denitrification performance under visible light irradiation

Enhancing photocatalytic selectivity is essential for the effective and efficient utilization of catalysts. In this study, a molecularly imprinted polymer POPD/Bi2O3/CeO2, designated as MIP-POPD/Bi2O3/CeO2, was successfully synthesized via photopolymerization using pyridine as a template. The resulting MIP-POPD/Bi2O3/CeO2 was characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N₂ adsorption–desorption isotherms, and UV–vis diffuse reflectance spectroscopy. MIP-POPD/Bi2O3/CeO2 exhibited enhanced charge transfer and efficient separation of photogenerated carriers, as confirmed by photoluminescence measurements, electrochemical impedance spectroscopy analysis, and photocurrent response (It) curve evaluations. When the concentration of pyridine in simulated oil reached 80 µg/g, with an amount of 1.6 g/L for MIP-POPD/Bi2O3/CeO2 and an illumination time of 120 min, the degradation rate of pyridine achieved 80%, which is 1.57 times greater than that observed using NMIP-POPD/Bi2O3/CeO2. After an adsorption for 30 min, MIP-POPD/Bi2O3/CeO2 exhibited the adsorption capacity of 5 mg/g, attributed to the large number of molecularly imprinted pores on its surface. In various mixed systems, the selectivity coefficients for pyridine using MIP-POPD/Bi2O3/CeO2 consistently exceeded 1.5, which can be attributed to the selective adsorption properties of the imprinted pores within the polymers that preferentially recognize and remove pyridine. Furthermore, after five cycles, the photocatalytic degradation rate of pyridine by MIP-POPD/Bi2O3/CeO2 can still reach 77%, indicating that MIP-POPD/Bi2O3/CeO2 possesses good stability. Trapping experiments demonstrated that superoxide radicals (·O2) and holes (h+) were the predominant active species in photocatalytic reactions. Additionally, a proposed mechanism for photocatalytic denitrification utilizing MIP-POPD/Bi2O3/CeO2 was presented. This study provides a promising strategy for designing Bi-based molecular imprinting photocatalysts aimed at efficiently removing low-concentration, highly toxic target pollutants from mixed samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
18.20%
发文量
229
审稿时长
2.6 months
期刊介绍: Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry. The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信