三塘湖盆地条湖—马郎凹陷煤层气开发甜点预测及技术应用

IF 1.827 Q2 Earth and Planetary Sciences
Yue Chen, Haoran Zhu, Xinggang Wang, Gaoxiang Rong, Qiqi Lei, Chenlu Tang, Jinbo Shi, Zan Liu
{"title":"三塘湖盆地条湖—马郎凹陷煤层气开发甜点预测及技术应用","authors":"Yue Chen,&nbsp;Haoran Zhu,&nbsp;Xinggang Wang,&nbsp;Gaoxiang Rong,&nbsp;Qiqi Lei,&nbsp;Chenlu Tang,&nbsp;Jinbo Shi,&nbsp;Zan Liu","doi":"10.1007/s12517-024-12167-0","DOIUrl":null,"url":null,"abstract":"<div><p>Unconventional oil and gas resources are characterized by low abundance and strong heterogeneity. Effective sweet spot prediction and mining technology are important for their efficient development. At present, the exploration and development of coalbed methane in the Santanghu Basin is still in the initial stage. Many problems in coalbed methane sweet spot prediction and mining technology seriously restrict the efficient development of coalbed methane resources. In order to study the most suitable evaluation indexes and methods for sweet spot prediction of coalbed methane development in Tiaohu-Malang Depression of Santanghu Basin, various technical means such as high-pressure mercury injection experiment, liquid nitrogen adsorption, and nuclear magnetic resonance are jointly used to analyze the occurrence state and mining technical conditions of coalbed methane in this area, establish a coalbed methane resource evaluation system, and accurately predict the sweet spot area of coalbed methane development. The results show that the main buried depth of the No.9 coal seam of Xishanyao Formation in Tiaohu-Malang Depression is 600–2600 m, and the thickness of coal seam is 5.0–60.9 m. The proportion of pore size volume of No.9 coal seam in the T1 well is mainly large pores and micropores, the proportion of mesopores is slightly smaller, and the specific surface area is opposite. The open pores of coal samples are more developed and the connectivity is better. The smaller pore size section of the coal sample is larger. When the P/P<sub>0</sub> value of the coal sample is about 0.5, there are sudden drop points and more ink bottle-shaped pores are developed. The lithology of the roof and floor is mainly mudstone, and the occurrence condition of coalbed methane is superior. Based on the geological conditions of coalbed methane in this area and the experience of coalbed methane exploration and development at home and abroad, 14 index evaluation indexes such as coal seam thickness, burial depth, lithology of coal seam roof and floor, structure, and so on are optimized and optimized. The sweet spot area of coalbed methane (type I area) is predicted to be mainly distributed in the northeast of Tiaohu Depression and the west of Malang Depression. Taking T1-5 well as an example, the five-stage dual-pressure control method is adopted in the drainage system. The bottom well flow pressure drop is controlled to be ≤ 0.02 MPa/d in the pressure holding and production release stages, and the bottom well flow pressure drop is ≤ 0.01 MPa/d in the stable production stage. The above methods and technologies have achieved initial results in the development of well T1-5, with the highest gas production of 2297 m<sup>3</sup>/d and the average gas production of 1300 m<sup>3</sup>/d, showing good gas production effect, which has important guiding significance for the subsequent efficient development of low-rank coalbed methane in Santanghu Basin.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 2","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sweet spot prediction and technology application of coalbed methane development in Tiaohu-Malang depression of Santanghu Basin\",\"authors\":\"Yue Chen,&nbsp;Haoran Zhu,&nbsp;Xinggang Wang,&nbsp;Gaoxiang Rong,&nbsp;Qiqi Lei,&nbsp;Chenlu Tang,&nbsp;Jinbo Shi,&nbsp;Zan Liu\",\"doi\":\"10.1007/s12517-024-12167-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unconventional oil and gas resources are characterized by low abundance and strong heterogeneity. Effective sweet spot prediction and mining technology are important for their efficient development. At present, the exploration and development of coalbed methane in the Santanghu Basin is still in the initial stage. Many problems in coalbed methane sweet spot prediction and mining technology seriously restrict the efficient development of coalbed methane resources. In order to study the most suitable evaluation indexes and methods for sweet spot prediction of coalbed methane development in Tiaohu-Malang Depression of Santanghu Basin, various technical means such as high-pressure mercury injection experiment, liquid nitrogen adsorption, and nuclear magnetic resonance are jointly used to analyze the occurrence state and mining technical conditions of coalbed methane in this area, establish a coalbed methane resource evaluation system, and accurately predict the sweet spot area of coalbed methane development. The results show that the main buried depth of the No.9 coal seam of Xishanyao Formation in Tiaohu-Malang Depression is 600–2600 m, and the thickness of coal seam is 5.0–60.9 m. The proportion of pore size volume of No.9 coal seam in the T1 well is mainly large pores and micropores, the proportion of mesopores is slightly smaller, and the specific surface area is opposite. The open pores of coal samples are more developed and the connectivity is better. The smaller pore size section of the coal sample is larger. When the P/P<sub>0</sub> value of the coal sample is about 0.5, there are sudden drop points and more ink bottle-shaped pores are developed. The lithology of the roof and floor is mainly mudstone, and the occurrence condition of coalbed methane is superior. Based on the geological conditions of coalbed methane in this area and the experience of coalbed methane exploration and development at home and abroad, 14 index evaluation indexes such as coal seam thickness, burial depth, lithology of coal seam roof and floor, structure, and so on are optimized and optimized. The sweet spot area of coalbed methane (type I area) is predicted to be mainly distributed in the northeast of Tiaohu Depression and the west of Malang Depression. Taking T1-5 well as an example, the five-stage dual-pressure control method is adopted in the drainage system. The bottom well flow pressure drop is controlled to be ≤ 0.02 MPa/d in the pressure holding and production release stages, and the bottom well flow pressure drop is ≤ 0.01 MPa/d in the stable production stage. The above methods and technologies have achieved initial results in the development of well T1-5, with the highest gas production of 2297 m<sup>3</sup>/d and the average gas production of 1300 m<sup>3</sup>/d, showing good gas production effect, which has important guiding significance for the subsequent efficient development of low-rank coalbed methane in Santanghu Basin.</p></div>\",\"PeriodicalId\":476,\"journal\":{\"name\":\"Arabian Journal of Geosciences\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8270,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12517-024-12167-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12167-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

非常规油气资源具有丰度低、非均质性强的特点。有效的甜点预测与开采技术对其高效开发具有重要意义。目前,三塘湖盆地煤层气勘探开发仍处于初级阶段。煤层气甜点预测与开采技术中存在的诸多问题严重制约了煤层气资源的高效开发。为了研究三塘湖盆地条湖—马郎凹陷煤层气开发甜点预测的最适宜评价指标和方法,联合运用高压压汞实验、液氮吸附、核磁共振等多种技术手段,对该区煤层气赋存状态和开采技术条件进行了分析,建立了煤层气资源评价体系。准确预测煤层气开发甜点区。结果表明:条湖—马郎凹陷西山窑组9号煤层主埋深600 ~ 2600 m,煤层厚度5.0 ~ 60.9 m;T1井9号煤层孔径体积占比以大孔和微孔为主,介孔占比略小,比表面积相反。煤样的开孔更发达,连通性更好。孔径越小的煤样截面越大。当煤样的P/P0值约为0.5时,煤样中出现了突落点,形成了较多的墨水瓶状孔隙。顶底板岩性以泥岩为主,煤层气赋存条件优越。根据本区煤层气地质条件和国内外煤层气勘探开发经验,对煤层厚度、埋深、煤层顶底板岩性、构造等14项评价指标进行了优化和优选。预测煤层气甜点区(ⅰ型区)主要分布在条湖坳陷东北部和马郎坳陷西部。以T1-5井为例,排水系统采用五级双压力控制方式。保压和生产释放阶段井底流压降控制在≤0.02 MPa/d,稳产阶段井底流压降控制在≤0.01 MPa/d。上述方法技术在T1-5井开发中取得初步成果,最高产气量2297 m3/d,平均产气量1300 m3/d,产气效果良好,对后续三塘湖盆低煤阶煤层气高效开发具有重要指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sweet spot prediction and technology application of coalbed methane development in Tiaohu-Malang depression of Santanghu Basin

Unconventional oil and gas resources are characterized by low abundance and strong heterogeneity. Effective sweet spot prediction and mining technology are important for their efficient development. At present, the exploration and development of coalbed methane in the Santanghu Basin is still in the initial stage. Many problems in coalbed methane sweet spot prediction and mining technology seriously restrict the efficient development of coalbed methane resources. In order to study the most suitable evaluation indexes and methods for sweet spot prediction of coalbed methane development in Tiaohu-Malang Depression of Santanghu Basin, various technical means such as high-pressure mercury injection experiment, liquid nitrogen adsorption, and nuclear magnetic resonance are jointly used to analyze the occurrence state and mining technical conditions of coalbed methane in this area, establish a coalbed methane resource evaluation system, and accurately predict the sweet spot area of coalbed methane development. The results show that the main buried depth of the No.9 coal seam of Xishanyao Formation in Tiaohu-Malang Depression is 600–2600 m, and the thickness of coal seam is 5.0–60.9 m. The proportion of pore size volume of No.9 coal seam in the T1 well is mainly large pores and micropores, the proportion of mesopores is slightly smaller, and the specific surface area is opposite. The open pores of coal samples are more developed and the connectivity is better. The smaller pore size section of the coal sample is larger. When the P/P0 value of the coal sample is about 0.5, there are sudden drop points and more ink bottle-shaped pores are developed. The lithology of the roof and floor is mainly mudstone, and the occurrence condition of coalbed methane is superior. Based on the geological conditions of coalbed methane in this area and the experience of coalbed methane exploration and development at home and abroad, 14 index evaluation indexes such as coal seam thickness, burial depth, lithology of coal seam roof and floor, structure, and so on are optimized and optimized. The sweet spot area of coalbed methane (type I area) is predicted to be mainly distributed in the northeast of Tiaohu Depression and the west of Malang Depression. Taking T1-5 well as an example, the five-stage dual-pressure control method is adopted in the drainage system. The bottom well flow pressure drop is controlled to be ≤ 0.02 MPa/d in the pressure holding and production release stages, and the bottom well flow pressure drop is ≤ 0.01 MPa/d in the stable production stage. The above methods and technologies have achieved initial results in the development of well T1-5, with the highest gas production of 2297 m3/d and the average gas production of 1300 m3/d, showing good gas production effect, which has important guiding significance for the subsequent efficient development of low-rank coalbed methane in Santanghu Basin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信