{"title":"通过逐层离子嵌入在少层石墨烯中的门控多态调制","authors":"Siyi Zhou, Shaorui Li, Yongchao Wang, Chenglin Yu, Yayu Wang, Jinsong Zhang","doi":"10.1007/s11433-024-2550-7","DOIUrl":null,"url":null,"abstract":"<div><p>The simultaneous modulation of electric and optical properties in graphene is essential for advancing high-performance applications in optoelectronics. However, achieving <i>in-situ</i> control of multiple electric and optical states in graphene devices remains a challenge. Here we demonstrate a versatile and reversible electric-field control of organic-ion intercalation from bilayer to pentalayer graphene. Through simultaneous optical imaging and electric measurements, we reveal multiple physical states controlled by the layer-by-layer intercalation processes, resulting in both high transparency and high electric conductance with an increase in the number of intercalated layers. Raman spectroscopy demonstrates that the intercalated graphene maintains a high carrier concentration without lattice degradation. Moreover, Hall effect measurements reveal that the carrier density can reach approximately 1.5 × 10<sup>14</sup> cm<sup>−2</sup> per layer. The ability to synchronously control the transparency and conductance states by adjusting the number of ion-intercalated layers highlights the potential of multistate modulation for the development of advanced optoelectronic devices in two-dimensional materials.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gate-controlled multistate modulation in few-layer graphene via layer-by-layer ion intercalation\",\"authors\":\"Siyi Zhou, Shaorui Li, Yongchao Wang, Chenglin Yu, Yayu Wang, Jinsong Zhang\",\"doi\":\"10.1007/s11433-024-2550-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The simultaneous modulation of electric and optical properties in graphene is essential for advancing high-performance applications in optoelectronics. However, achieving <i>in-situ</i> control of multiple electric and optical states in graphene devices remains a challenge. Here we demonstrate a versatile and reversible electric-field control of organic-ion intercalation from bilayer to pentalayer graphene. Through simultaneous optical imaging and electric measurements, we reveal multiple physical states controlled by the layer-by-layer intercalation processes, resulting in both high transparency and high electric conductance with an increase in the number of intercalated layers. Raman spectroscopy demonstrates that the intercalated graphene maintains a high carrier concentration without lattice degradation. Moreover, Hall effect measurements reveal that the carrier density can reach approximately 1.5 × 10<sup>14</sup> cm<sup>−2</sup> per layer. The ability to synchronously control the transparency and conductance states by adjusting the number of ion-intercalated layers highlights the potential of multistate modulation for the development of advanced optoelectronic devices in two-dimensional materials.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 4\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2550-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2550-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Gate-controlled multistate modulation in few-layer graphene via layer-by-layer ion intercalation
The simultaneous modulation of electric and optical properties in graphene is essential for advancing high-performance applications in optoelectronics. However, achieving in-situ control of multiple electric and optical states in graphene devices remains a challenge. Here we demonstrate a versatile and reversible electric-field control of organic-ion intercalation from bilayer to pentalayer graphene. Through simultaneous optical imaging and electric measurements, we reveal multiple physical states controlled by the layer-by-layer intercalation processes, resulting in both high transparency and high electric conductance with an increase in the number of intercalated layers. Raman spectroscopy demonstrates that the intercalated graphene maintains a high carrier concentration without lattice degradation. Moreover, Hall effect measurements reveal that the carrier density can reach approximately 1.5 × 1014 cm−2 per layer. The ability to synchronously control the transparency and conductance states by adjusting the number of ion-intercalated layers highlights the potential of multistate modulation for the development of advanced optoelectronic devices in two-dimensional materials.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.