基于图像分析、传统机器学习和深度学习算法的高丛和低丛蓝莓品种认证新方法

IF 3 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Ewa Ropelewska, Michał Koniarski
{"title":"基于图像分析、传统机器学习和深度学习算法的高丛和低丛蓝莓品种认证新方法","authors":"Ewa Ropelewska,&nbsp;Michał Koniarski","doi":"10.1007/s00217-024-04626-5","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to classify blueberry cultivars based on image texture parameters using models built using traditional machine learning and deep learning algorithms. The blueberries belonging to highbush cultivars (‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’) and lowbush cultivars (‘Emil’ and ‘Putte’) were subjected to imaging using a digital camera. The texture parameters from blueberry images in color channels <i>R</i>, <i>G</i>, <i>B</i>, <i>L</i>, <i>a</i>, <i>b</i>, <i>X</i>, <i>Y</i>, <i>Z</i>, <i>U</i>, <i>V</i>, and <i>S</i> were determined. After selection image textures were used to build models for the classification of all highbush and lowbush blueberry cultivars, and highbush blueberry cultivars and lowbush blueberry cultivars, separately. In the case of distinguishing all cultivars, such as ‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’, ‘Emil’ and ‘Putte’, the classification accuracy reached 92.33% for a model built using a deep learning algorithm. Models built to distinguish only highbush cultivars provided an average accuracy of up to 91.25% (WiSARD). For models developed to classify two lowbush cultivars, an average accuracy reaching 96% (WiSARD) was found. The applied procedure can be used in practice to distinguish blueberry cultivars before their consumption or processing.</p></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"251 2","pages":"193 - 204"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00217-024-04626-5.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel approach to authentication of highbush and lowbush blueberry cultivars using image analysis, traditional machine learning and deep learning algorithms\",\"authors\":\"Ewa Ropelewska,&nbsp;Michał Koniarski\",\"doi\":\"10.1007/s00217-024-04626-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study was to classify blueberry cultivars based on image texture parameters using models built using traditional machine learning and deep learning algorithms. The blueberries belonging to highbush cultivars (‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’) and lowbush cultivars (‘Emil’ and ‘Putte’) were subjected to imaging using a digital camera. The texture parameters from blueberry images in color channels <i>R</i>, <i>G</i>, <i>B</i>, <i>L</i>, <i>a</i>, <i>b</i>, <i>X</i>, <i>Y</i>, <i>Z</i>, <i>U</i>, <i>V</i>, and <i>S</i> were determined. After selection image textures were used to build models for the classification of all highbush and lowbush blueberry cultivars, and highbush blueberry cultivars and lowbush blueberry cultivars, separately. In the case of distinguishing all cultivars, such as ‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’, ‘Emil’ and ‘Putte’, the classification accuracy reached 92.33% for a model built using a deep learning algorithm. Models built to distinguish only highbush cultivars provided an average accuracy of up to 91.25% (WiSARD). For models developed to classify two lowbush cultivars, an average accuracy reaching 96% (WiSARD) was found. The applied procedure can be used in practice to distinguish blueberry cultivars before their consumption or processing.</p></div>\",\"PeriodicalId\":549,\"journal\":{\"name\":\"European Food Research and Technology\",\"volume\":\"251 2\",\"pages\":\"193 - 204\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00217-024-04626-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Food Research and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00217-024-04626-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04626-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是利用传统机器学习和深度学习算法建立的模型,基于图像纹理参数对蓝莓品种进行分类。高丛栽培品种(‘Bluecrop’、‘Herbert’、‘Jersey’和‘Nelson’)和低丛栽培品种(‘Emil’和‘Putte’)的蓝莓使用数码相机进行成像。确定了颜色通道R、G、B、L、a、B、X、Y、Z、U、V和S中蓝莓图像的纹理参数。选择后,利用图像纹理分别建立高丛和低丛蓝莓品种、高丛蓝莓品种和低丛蓝莓品种的分类模型。在区分所有品种的情况下,如“Bluecrop”、“Herbert”、“Jersey”和“Nelson”、“Emil”和“Putte”,使用深度学习算法构建的模型的分类准确率达到92.33%。仅用于区分高灌木品种的模型平均准确率高达91.25% (WiSARD)。建立的低灌木品种分类模型平均准确率达96% (WiSARD)。应用程序可在实际中用于在食用或加工前区分蓝莓品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach to authentication of highbush and lowbush blueberry cultivars using image analysis, traditional machine learning and deep learning algorithms

The objective of this study was to classify blueberry cultivars based on image texture parameters using models built using traditional machine learning and deep learning algorithms. The blueberries belonging to highbush cultivars (‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’) and lowbush cultivars (‘Emil’ and ‘Putte’) were subjected to imaging using a digital camera. The texture parameters from blueberry images in color channels R, G, B, L, a, b, X, Y, Z, U, V, and S were determined. After selection image textures were used to build models for the classification of all highbush and lowbush blueberry cultivars, and highbush blueberry cultivars and lowbush blueberry cultivars, separately. In the case of distinguishing all cultivars, such as ‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’, ‘Emil’ and ‘Putte’, the classification accuracy reached 92.33% for a model built using a deep learning algorithm. Models built to distinguish only highbush cultivars provided an average accuracy of up to 91.25% (WiSARD). For models developed to classify two lowbush cultivars, an average accuracy reaching 96% (WiSARD) was found. The applied procedure can be used in practice to distinguish blueberry cultivars before their consumption or processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Food Research and Technology
European Food Research and Technology 工程技术-食品科技
CiteScore
6.60
自引率
3.00%
发文量
232
审稿时长
2.0 months
期刊介绍: The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections: -chemistry and biochemistry- technology and molecular biotechnology- nutritional chemistry and toxicology- analytical and sensory methodologies- food physics. Out of the scope of the journal are: - contributions which are not of international interest or do not have a substantial impact on food sciences, - submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods, - contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信