{"title":"基于voronoi -镶嵌的多孔不规则支架生物力学和生物学性能综合评价","authors":"Yuzhu Wang, Chenhao Ma, Yufeng Wu, Dawei Gao, Yue Meng, Haibin Wang","doi":"10.1007/s42235-024-00630-3","DOIUrl":null,"url":null,"abstract":"<div><p>The irregular porous structure, similar to human bone tissue, is more beneficial for bone ingrowth than the regular one. We proposed a new design method to create uniform and gradient irregular porous structures with porosities from 38 to 83% based on Voronoi tessellation. The models were fabricated using selective laser sintering, and micro-CT was used to assess their morphological features. Mechanical and fluid flow properties were evaluated through experiments and computational fluid dynamics simulations. Micro-CT scans confirmed that 3D printing can produce high-quality irregular structures. The Graded Irregular (GI) structure showed clear advantages in mechanical properties by reducing stress shielding and improving hydrodynamic performance with higher fluid flow velocity and lower permeability compared to the Uniform Irregular (UI) structure. Additionally, in vitro cell experiments indicated that the GI structure was better than the UI structure in promoting osteogenic differentiation, while in vivo animal studies showed that the GI structure was superior in terms of the ratio of Bone Volume to Total Volume (BV/TV) and Trabecular Number (Tb.N). Thus, the GI structure has greater application potential in bone tissue engineering.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 1","pages":"322 - 340"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Evaluation of Biomechanical and Biological Properties of the Porous Irregular Scaffolds Based on Voronoi-tessellation\",\"authors\":\"Yuzhu Wang, Chenhao Ma, Yufeng Wu, Dawei Gao, Yue Meng, Haibin Wang\",\"doi\":\"10.1007/s42235-024-00630-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The irregular porous structure, similar to human bone tissue, is more beneficial for bone ingrowth than the regular one. We proposed a new design method to create uniform and gradient irregular porous structures with porosities from 38 to 83% based on Voronoi tessellation. The models were fabricated using selective laser sintering, and micro-CT was used to assess their morphological features. Mechanical and fluid flow properties were evaluated through experiments and computational fluid dynamics simulations. Micro-CT scans confirmed that 3D printing can produce high-quality irregular structures. The Graded Irregular (GI) structure showed clear advantages in mechanical properties by reducing stress shielding and improving hydrodynamic performance with higher fluid flow velocity and lower permeability compared to the Uniform Irregular (UI) structure. Additionally, in vitro cell experiments indicated that the GI structure was better than the UI structure in promoting osteogenic differentiation, while in vivo animal studies showed that the GI structure was superior in terms of the ratio of Bone Volume to Total Volume (BV/TV) and Trabecular Number (Tb.N). Thus, the GI structure has greater application potential in bone tissue engineering.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"22 1\",\"pages\":\"322 - 340\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00630-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00630-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Comprehensive Evaluation of Biomechanical and Biological Properties of the Porous Irregular Scaffolds Based on Voronoi-tessellation
The irregular porous structure, similar to human bone tissue, is more beneficial for bone ingrowth than the regular one. We proposed a new design method to create uniform and gradient irregular porous structures with porosities from 38 to 83% based on Voronoi tessellation. The models were fabricated using selective laser sintering, and micro-CT was used to assess their morphological features. Mechanical and fluid flow properties were evaluated through experiments and computational fluid dynamics simulations. Micro-CT scans confirmed that 3D printing can produce high-quality irregular structures. The Graded Irregular (GI) structure showed clear advantages in mechanical properties by reducing stress shielding and improving hydrodynamic performance with higher fluid flow velocity and lower permeability compared to the Uniform Irregular (UI) structure. Additionally, in vitro cell experiments indicated that the GI structure was better than the UI structure in promoting osteogenic differentiation, while in vivo animal studies showed that the GI structure was superior in terms of the ratio of Bone Volume to Total Volume (BV/TV) and Trabecular Number (Tb.N). Thus, the GI structure has greater application potential in bone tissue engineering.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.