g-C3N4/ZnS/SnO2三元纳米复合材料电化学碱水分解和光催化亚甲基蓝分解反应的研究

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
S. Ashok, N. Kumaresan, Hanson Clinton D Souza, Tatianne Ferreira de Oliveira, V. Ganesh
{"title":"g-C3N4/ZnS/SnO2三元纳米复合材料电化学碱水分解和光催化亚甲基蓝分解反应的研究","authors":"S. Ashok,&nbsp;N. Kumaresan,&nbsp;Hanson Clinton D Souza,&nbsp;Tatianne Ferreira de Oliveira,&nbsp;V. Ganesh","doi":"10.1007/s10008-024-06099-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we report the development of a cost-effective and highly efficient bi-functional g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite for electrochemical hydrogen evolution reaction (HER) and photocatalytic applications under sunlight irradiation. The nanocomposites were synthesized using a facile hydrothermal method, combining semiconducting ZnS and SnO<sub>2</sub> nanomaterials with g-C<sub>3</sub>N<sub>4</sub> nanosheets. Comprehensive characterization techniques were employed to analyze the structural, morphological, electrochemical, and photocatalytic properties of the synthesized nanocomposite. X-ray diffraction (XRD) analysis demonstrates that the g-C<sub>3</sub>N<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>/ZnS, and g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> nanostructures exhibit excellent crystallinity, as evidenced by the sharp and well-defined peaks in the XRD patterns. Field emission scanning electron microscopy (FESEM) reveals the deposition of spherical ZnS nanoparticles and agglomerated SnO<sub>2</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub> nanosheets, forming a ternary nanocomposite structure. The g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite exhibits a high Brunauer–Emmett–Teller (BET) surface area of 118.123 m<sup>2</sup> g<sup>−1</sup> and an optical band gap of 2.88 eV. Electrochemical measurements show that the nanocomposite has enhanced catalytic activity for the HER, with a low Tafel slope of 92 mV dec<sup>−1</sup> and an overpotential of − 0.372 V vs. RHE at 10 mA cm<sup>−2</sup>. Furthermore, the g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite demonstrates excellent photocatalytic performance, exhibiting high degradation efficiency against methylene blue (MB) dye under sunlight exposure. The synergistic effects of the ternary nanocomposite structure, high surface area, and suitable optical properties contribute to the enhanced photocatalytic and electrocatalytic activities. The developed g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite shows great potential as a cost-effective and highly efficient bi-functional material for sustainable energy applications of hydrogen evaluation and environmental remediation.\n</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"389 - 400"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation on g-C3N4/ZnS/SnO2 ternary nanocomposites for electrochemical alkaline water splitting and photocatalytic methylene blue decomposition reactions\",\"authors\":\"S. Ashok,&nbsp;N. Kumaresan,&nbsp;Hanson Clinton D Souza,&nbsp;Tatianne Ferreira de Oliveira,&nbsp;V. Ganesh\",\"doi\":\"10.1007/s10008-024-06099-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we report the development of a cost-effective and highly efficient bi-functional g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite for electrochemical hydrogen evolution reaction (HER) and photocatalytic applications under sunlight irradiation. The nanocomposites were synthesized using a facile hydrothermal method, combining semiconducting ZnS and SnO<sub>2</sub> nanomaterials with g-C<sub>3</sub>N<sub>4</sub> nanosheets. Comprehensive characterization techniques were employed to analyze the structural, morphological, electrochemical, and photocatalytic properties of the synthesized nanocomposite. X-ray diffraction (XRD) analysis demonstrates that the g-C<sub>3</sub>N<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>/ZnS, and g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> nanostructures exhibit excellent crystallinity, as evidenced by the sharp and well-defined peaks in the XRD patterns. Field emission scanning electron microscopy (FESEM) reveals the deposition of spherical ZnS nanoparticles and agglomerated SnO<sub>2</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub> nanosheets, forming a ternary nanocomposite structure. The g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite exhibits a high Brunauer–Emmett–Teller (BET) surface area of 118.123 m<sup>2</sup> g<sup>−1</sup> and an optical band gap of 2.88 eV. Electrochemical measurements show that the nanocomposite has enhanced catalytic activity for the HER, with a low Tafel slope of 92 mV dec<sup>−1</sup> and an overpotential of − 0.372 V vs. RHE at 10 mA cm<sup>−2</sup>. Furthermore, the g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite demonstrates excellent photocatalytic performance, exhibiting high degradation efficiency against methylene blue (MB) dye under sunlight exposure. The synergistic effects of the ternary nanocomposite structure, high surface area, and suitable optical properties contribute to the enhanced photocatalytic and electrocatalytic activities. The developed g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite shows great potential as a cost-effective and highly efficient bi-functional material for sustainable energy applications of hydrogen evaluation and environmental remediation.\\n</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"29 2\",\"pages\":\"389 - 400\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-06099-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06099-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们报道了一种经济高效的双官能团g-C3N4/ZnS/SnO2三元纳米复合材料的开发,用于电化学析氢反应(HER)和光催化。采用水热法将半导体ZnS和SnO2纳米材料与g-C3N4纳米片结合,制备了纳米复合材料。采用综合表征技术对合成的纳米复合材料的结构、形态、电化学和光催化性能进行了分析。x射线衍射(XRD)分析表明,g-C3N4、g-C3N4/ZnS和g-C3N4/ZnS/SnO2纳米结构具有优异的结晶度,XRD谱图中有清晰的峰。场发射扫描电镜(FESEM)显示球形纳米ZnS和球状SnO2纳米粒子沉积在g-C3N4纳米片上,形成三元纳米复合结构。g- c3n4 /ZnS/SnO2三元纳米复合材料的BET (brunauer - emmet - teller)表面积为118.123 m2 g−1,光学带隙为2.88 eV。电化学测量表明,纳米复合材料对HER具有较强的催化活性,在10 mA cm−2时,Tafel斜率为92 mV dec−1,过电位为−0.372 V。此外,g-C3N4/ZnS/SnO2三元纳米复合材料表现出优异的光催化性能,在阳光照射下对亚甲基蓝(MB)染料表现出较高的降解效率。三元纳米复合材料的协同效应、高的比表面积和合适的光学性质有助于增强光催化和电催化活性。所制备的g-C3N4/ZnS/SnO2三元复合材料作为一种经济高效的双功能材料,在氢评价和环境修复等可持续能源领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigation on g-C3N4/ZnS/SnO2 ternary nanocomposites for electrochemical alkaline water splitting and photocatalytic methylene blue decomposition reactions

In this study, we report the development of a cost-effective and highly efficient bi-functional g-C3N4/ZnS/SnO2 ternary nanocomposite for electrochemical hydrogen evolution reaction (HER) and photocatalytic applications under sunlight irradiation. The nanocomposites were synthesized using a facile hydrothermal method, combining semiconducting ZnS and SnO2 nanomaterials with g-C3N4 nanosheets. Comprehensive characterization techniques were employed to analyze the structural, morphological, electrochemical, and photocatalytic properties of the synthesized nanocomposite. X-ray diffraction (XRD) analysis demonstrates that the g-C3N4, g-C3N4/ZnS, and g-C3N4/ZnS/SnO2 nanostructures exhibit excellent crystallinity, as evidenced by the sharp and well-defined peaks in the XRD patterns. Field emission scanning electron microscopy (FESEM) reveals the deposition of spherical ZnS nanoparticles and agglomerated SnO2 nanoparticles on g-C3N4 nanosheets, forming a ternary nanocomposite structure. The g-C3N4/ZnS/SnO2 ternary nanocomposite exhibits a high Brunauer–Emmett–Teller (BET) surface area of 118.123 m2 g−1 and an optical band gap of 2.88 eV. Electrochemical measurements show that the nanocomposite has enhanced catalytic activity for the HER, with a low Tafel slope of 92 mV dec−1 and an overpotential of − 0.372 V vs. RHE at 10 mA cm−2. Furthermore, the g-C3N4/ZnS/SnO2 ternary nanocomposite demonstrates excellent photocatalytic performance, exhibiting high degradation efficiency against methylene blue (MB) dye under sunlight exposure. The synergistic effects of the ternary nanocomposite structure, high surface area, and suitable optical properties contribute to the enhanced photocatalytic and electrocatalytic activities. The developed g-C3N4/ZnS/SnO2 ternary nanocomposite shows great potential as a cost-effective and highly efficient bi-functional material for sustainable energy applications of hydrogen evaluation and environmental remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信