融合机器学习和可解释人工智能增强水稻分类:以Cammeo和Osmancik品种为例

IF 3 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Ahmet Çifci, İsmail Kırbaş
{"title":"融合机器学习和可解释人工智能增强水稻分类:以Cammeo和Osmancik品种为例","authors":"Ahmet Çifci,&nbsp;İsmail Kırbaş","doi":"10.1007/s00217-024-04614-9","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate identification and classification of rice species is critical for increasing crop productivity, quality, and diversity. Traditional rice classification methods involving manual inspection can be time-consuming, costly, and error-prone. This study addresses to address this challenge by exploring the potential of machine learning (ML) models for automated and accurate rice classification. The key objectives of this paper are threefold. First, the study evaluates the discriminative power of various morphological features extracted from rice grain images using feature selection methods. Second, it compares the performance of several ML models, including Artificial Neural Network (ANN), Categorical Boosting (CatBoost), Gradient Boosting (GBoost), k-Nearest Neighbours (k-NN), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), in classifying two rice species (Cammeo and Osmancik). Third, the study implements explainable artificial intelligence (XAI) techniques, namely SHapley Additive exPlanation (SHAP) and Individual Conditional Expectation (ICE) plots, to provide transparency and interpretability into the inner workings and decision-making processes of the ML models. The findings indicate that the LR model achieved the highest classification accuracy, with a rate of 93.1%. Feature analysis identified Major Axis Length, Perimeter, Convex Area, and Area as the most influential features in distinguishing between rice species. This study highlights the successful application of advanced ML techniques in automating industrial rice classification, facilitating automated packaging and quality control processes without the need for human intervention. By improving the efficiency of rice classification and reducing reliance on manual labour, this approach offers significant benefits to both the agricultural industry and food production sectors.</p></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"251 1","pages":"69 - 86"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00217-024-04614-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Fusion of machine learning and explainable AI for enhanced rice classification: a case study on Cammeo and Osmancik species\",\"authors\":\"Ahmet Çifci,&nbsp;İsmail Kırbaş\",\"doi\":\"10.1007/s00217-024-04614-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The accurate identification and classification of rice species is critical for increasing crop productivity, quality, and diversity. Traditional rice classification methods involving manual inspection can be time-consuming, costly, and error-prone. This study addresses to address this challenge by exploring the potential of machine learning (ML) models for automated and accurate rice classification. The key objectives of this paper are threefold. First, the study evaluates the discriminative power of various morphological features extracted from rice grain images using feature selection methods. Second, it compares the performance of several ML models, including Artificial Neural Network (ANN), Categorical Boosting (CatBoost), Gradient Boosting (GBoost), k-Nearest Neighbours (k-NN), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), in classifying two rice species (Cammeo and Osmancik). Third, the study implements explainable artificial intelligence (XAI) techniques, namely SHapley Additive exPlanation (SHAP) and Individual Conditional Expectation (ICE) plots, to provide transparency and interpretability into the inner workings and decision-making processes of the ML models. The findings indicate that the LR model achieved the highest classification accuracy, with a rate of 93.1%. Feature analysis identified Major Axis Length, Perimeter, Convex Area, and Area as the most influential features in distinguishing between rice species. This study highlights the successful application of advanced ML techniques in automating industrial rice classification, facilitating automated packaging and quality control processes without the need for human intervention. By improving the efficiency of rice classification and reducing reliance on manual labour, this approach offers significant benefits to both the agricultural industry and food production sectors.</p></div>\",\"PeriodicalId\":549,\"journal\":{\"name\":\"European Food Research and Technology\",\"volume\":\"251 1\",\"pages\":\"69 - 86\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00217-024-04614-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Food Research and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00217-024-04614-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04614-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水稻品种的准确鉴定和分类对提高作物产量、质量和多样性至关重要。传统的大米分类方法涉及人工检查,既耗时又昂贵,而且容易出错。本研究通过探索机器学习(ML)模型在自动和准确大米分类方面的潜力来解决这一挑战。本文的主要目标有三个。首先,利用特征选择方法对从大米图像中提取的各种形态特征进行判别能力评估。其次,比较了几种机器学习模型的性能,包括人工神经网络(ANN)、分类增强(CatBoost)、梯度增强(GBoost)、k-近邻(k-NN)、逻辑回归(LR)、Naïve贝叶斯(NB)、随机森林(RF)、随机梯度下降(SGD)、支持向量机(SVM)和极端梯度增强(XGBoost),对两种水稻(Cammeo和Osmancik)进行分类。第三,本研究实现了可解释的人工智能(XAI)技术,即SHapley加性解释(SHAP)和个体条件期望(ICE)图,为ML模型的内部工作和决策过程提供了透明度和可解释性。结果表明,LR模型的分类准确率最高,达到93.1%。特征分析表明,长轴长度、周长、凸面积和面积是水稻品种区分的主要特征。本研究强调了先进的机器学习技术在自动化工业大米分类中的成功应用,促进了自动化包装和质量控制过程,而无需人工干预。通过提高大米分类的效率和减少对体力劳动的依赖,这种方法为农业和粮食生产部门都带来了巨大的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of machine learning and explainable AI for enhanced rice classification: a case study on Cammeo and Osmancik species

The accurate identification and classification of rice species is critical for increasing crop productivity, quality, and diversity. Traditional rice classification methods involving manual inspection can be time-consuming, costly, and error-prone. This study addresses to address this challenge by exploring the potential of machine learning (ML) models for automated and accurate rice classification. The key objectives of this paper are threefold. First, the study evaluates the discriminative power of various morphological features extracted from rice grain images using feature selection methods. Second, it compares the performance of several ML models, including Artificial Neural Network (ANN), Categorical Boosting (CatBoost), Gradient Boosting (GBoost), k-Nearest Neighbours (k-NN), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), in classifying two rice species (Cammeo and Osmancik). Third, the study implements explainable artificial intelligence (XAI) techniques, namely SHapley Additive exPlanation (SHAP) and Individual Conditional Expectation (ICE) plots, to provide transparency and interpretability into the inner workings and decision-making processes of the ML models. The findings indicate that the LR model achieved the highest classification accuracy, with a rate of 93.1%. Feature analysis identified Major Axis Length, Perimeter, Convex Area, and Area as the most influential features in distinguishing between rice species. This study highlights the successful application of advanced ML techniques in automating industrial rice classification, facilitating automated packaging and quality control processes without the need for human intervention. By improving the efficiency of rice classification and reducing reliance on manual labour, this approach offers significant benefits to both the agricultural industry and food production sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Food Research and Technology
European Food Research and Technology 工程技术-食品科技
CiteScore
6.60
自引率
3.00%
发文量
232
审稿时长
2.0 months
期刊介绍: The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections: -chemistry and biochemistry- technology and molecular biotechnology- nutritional chemistry and toxicology- analytical and sensory methodologies- food physics. Out of the scope of the journal are: - contributions which are not of international interest or do not have a substantial impact on food sciences, - submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods, - contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信