{"title":"提高柚皮苷口服溶解度和生物利用度的磷脂基天然体纳米载体的制备、表征和药代动力学研究","authors":"Vijay Metkari, Rohit Shah, Nitin Salunkhe, Shailendra Gurav","doi":"10.1208/s12249-025-03047-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study hypothesizes that phospholipid-based naturosoomal nanocarriers can significantly enhance the oral solubility and bioavailability of naringin (NARNs) by improving its absorption and pharmacokinetic profile. The NARNs were prepared using solvent evaporation techniques employing a quality-by-design approach followed by physicochemical (UV–visible spectroscopy, FTIR, DSC, XRD, SEM, TEM, PS, ZP analysis), functional (EE, apparent solubility, <i>in-vitro</i> drug release study) characterization and pharmacokinetic investigation. NARNs showed 91.15 ± 1.40% EE, with 12-fold aqueous solubility than the pure drug, i.e., naringin (NAR). The size of the NARNs vesicles was between 150 and 300 nm, demonstrating the controlled vesicle size, whereas the zeta potential and polydispersity index were -32.2 mV and 0.524, respectively signifying the excellent stability and homogeneity of naturosomal suspension. The NARNs <i>in-vitro</i> dissolution data demonstrated a superior release profile (92.12%) compared to pure NAR (38.90%) and physical mixture (43.72%). The pharmacokinetic parameters of NARN in the rabbit showed promising results (T<sub>max</sub> = 2.0 h, C<sub>max</sub> = 1.76 ± 0.10 µg/mL, and AUC<sub>0-24</sub> = 14.22 ± 0.13 µg/mL h). Thus, overall results indicated that naturosomal drug delivery is a capable method for improving the drug release profile of NAR and oral bioavailability, reducing toxicity by minimizing dose size.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03047-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication, Characterization, and Pharmacokinetics of Phospholipid-Based Naturosomal Nanocarriers for Enhanced Oral Solubility and Bioavailability of Naringin\",\"authors\":\"Vijay Metkari, Rohit Shah, Nitin Salunkhe, Shailendra Gurav\",\"doi\":\"10.1208/s12249-025-03047-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study hypothesizes that phospholipid-based naturosoomal nanocarriers can significantly enhance the oral solubility and bioavailability of naringin (NARNs) by improving its absorption and pharmacokinetic profile. The NARNs were prepared using solvent evaporation techniques employing a quality-by-design approach followed by physicochemical (UV–visible spectroscopy, FTIR, DSC, XRD, SEM, TEM, PS, ZP analysis), functional (EE, apparent solubility, <i>in-vitro</i> drug release study) characterization and pharmacokinetic investigation. NARNs showed 91.15 ± 1.40% EE, with 12-fold aqueous solubility than the pure drug, i.e., naringin (NAR). The size of the NARNs vesicles was between 150 and 300 nm, demonstrating the controlled vesicle size, whereas the zeta potential and polydispersity index were -32.2 mV and 0.524, respectively signifying the excellent stability and homogeneity of naturosomal suspension. The NARNs <i>in-vitro</i> dissolution data demonstrated a superior release profile (92.12%) compared to pure NAR (38.90%) and physical mixture (43.72%). The pharmacokinetic parameters of NARN in the rabbit showed promising results (T<sub>max</sub> = 2.0 h, C<sub>max</sub> = 1.76 ± 0.10 µg/mL, and AUC<sub>0-24</sub> = 14.22 ± 0.13 µg/mL h). Thus, overall results indicated that naturosomal drug delivery is a capable method for improving the drug release profile of NAR and oral bioavailability, reducing toxicity by minimizing dose size.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1208/s12249-025-03047-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-025-03047-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03047-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Fabrication, Characterization, and Pharmacokinetics of Phospholipid-Based Naturosomal Nanocarriers for Enhanced Oral Solubility and Bioavailability of Naringin
This study hypothesizes that phospholipid-based naturosoomal nanocarriers can significantly enhance the oral solubility and bioavailability of naringin (NARNs) by improving its absorption and pharmacokinetic profile. The NARNs were prepared using solvent evaporation techniques employing a quality-by-design approach followed by physicochemical (UV–visible spectroscopy, FTIR, DSC, XRD, SEM, TEM, PS, ZP analysis), functional (EE, apparent solubility, in-vitro drug release study) characterization and pharmacokinetic investigation. NARNs showed 91.15 ± 1.40% EE, with 12-fold aqueous solubility than the pure drug, i.e., naringin (NAR). The size of the NARNs vesicles was between 150 and 300 nm, demonstrating the controlled vesicle size, whereas the zeta potential and polydispersity index were -32.2 mV and 0.524, respectively signifying the excellent stability and homogeneity of naturosomal suspension. The NARNs in-vitro dissolution data demonstrated a superior release profile (92.12%) compared to pure NAR (38.90%) and physical mixture (43.72%). The pharmacokinetic parameters of NARN in the rabbit showed promising results (Tmax = 2.0 h, Cmax = 1.76 ± 0.10 µg/mL, and AUC0-24 = 14.22 ± 0.13 µg/mL h). Thus, overall results indicated that naturosomal drug delivery is a capable method for improving the drug release profile of NAR and oral bioavailability, reducing toxicity by minimizing dose size.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.