Ravi Kumar, Sunil K. Sharma, Ajay K. Sharma, M. Musarleen
{"title":"基于带矩阵的q-Fibonacci Cesàro序列空间","authors":"Ravi Kumar, Sunil K. Sharma, Ajay K. Sharma, M. Musarleen","doi":"10.1007/s40995-024-01706-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define the new sequence spaces <span>\\(Ces_p(\\tilde{\\mathcal {G}}_q)~ (1\\le p<\\infty )\\)</span> and <span>\\(Ces_\\infty (\\tilde{\\mathcal {G}}_q)\\)</span> by using <i>q</i>-Fibonacci band matrix <span>\\(\\tilde{\\mathcal {G}}_q\\)</span> defined by </p><div><div><span>$$\\begin{aligned}\\tilde{\\mathcal {G}}_q=\\tilde{\\mathcal {G}}_{rk}(q)= \\left\\{ \\begin{array}{ll} -\\frac{\\mathcal {G}_{r+1}(q)-1}{q^r \\mathcal {G}_r(q)},&{}\\quad k=r-1\\\\ \\frac{\\mathcal {G}_{r+2}(q)-1}{q^r \\mathcal {G}_r(q)},&{}\\quad k=r\\\\ 0,&{}\\quad \\text {otherwise}, \\end{array}\\right. \\end{aligned}$$</span></div></div><p><span>\\(\\text {where}~ (k,r \\in \\mathbb {N}).\\)</span> We examine some topological properties and some inclusion relation for these spaces. We also make an effort to build a basis for the space <span>\\(Ces_p(\\tilde{\\mathcal {G}}_q)\\)</span>, compute <span>\\(\\alpha\\)</span>-duals of the same space, characterize some matrix classes and study some geometric properties.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 1","pages":"201 - 208"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On q-Fibonacci Cesàro Sequence Spaces by Using Band Matrix\",\"authors\":\"Ravi Kumar, Sunil K. Sharma, Ajay K. Sharma, M. Musarleen\",\"doi\":\"10.1007/s40995-024-01706-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we define the new sequence spaces <span>\\\\(Ces_p(\\\\tilde{\\\\mathcal {G}}_q)~ (1\\\\le p<\\\\infty )\\\\)</span> and <span>\\\\(Ces_\\\\infty (\\\\tilde{\\\\mathcal {G}}_q)\\\\)</span> by using <i>q</i>-Fibonacci band matrix <span>\\\\(\\\\tilde{\\\\mathcal {G}}_q\\\\)</span> defined by </p><div><div><span>$$\\\\begin{aligned}\\\\tilde{\\\\mathcal {G}}_q=\\\\tilde{\\\\mathcal {G}}_{rk}(q)= \\\\left\\\\{ \\\\begin{array}{ll} -\\\\frac{\\\\mathcal {G}_{r+1}(q)-1}{q^r \\\\mathcal {G}_r(q)},&{}\\\\quad k=r-1\\\\\\\\ \\\\frac{\\\\mathcal {G}_{r+2}(q)-1}{q^r \\\\mathcal {G}_r(q)},&{}\\\\quad k=r\\\\\\\\ 0,&{}\\\\quad \\\\text {otherwise}, \\\\end{array}\\\\right. \\\\end{aligned}$$</span></div></div><p><span>\\\\(\\\\text {where}~ (k,r \\\\in \\\\mathbb {N}).\\\\)</span> We examine some topological properties and some inclusion relation for these spaces. We also make an effort to build a basis for the space <span>\\\\(Ces_p(\\\\tilde{\\\\mathcal {G}}_q)\\\\)</span>, compute <span>\\\\(\\\\alpha\\\\)</span>-duals of the same space, characterize some matrix classes and study some geometric properties.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 1\",\"pages\":\"201 - 208\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01706-9\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01706-9","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
On q-Fibonacci Cesàro Sequence Spaces by Using Band Matrix
In this paper, we define the new sequence spaces \(Ces_p(\tilde{\mathcal {G}}_q)~ (1\le p<\infty )\) and \(Ces_\infty (\tilde{\mathcal {G}}_q)\) by using q-Fibonacci band matrix \(\tilde{\mathcal {G}}_q\) defined by
\(\text {where}~ (k,r \in \mathbb {N}).\) We examine some topological properties and some inclusion relation for these spaces. We also make an effort to build a basis for the space \(Ces_p(\tilde{\mathcal {G}}_q)\), compute \(\alpha\)-duals of the same space, characterize some matrix classes and study some geometric properties.
期刊介绍:
The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences