{"title":"基于石墨烯/SOI平台的被动矩阵肖特基势垒二维光电二极管阵列","authors":"Alper Yanilmaz, Özhan Ünverdi, Cem Çelebi","doi":"10.1007/s00339-025-08298-0","DOIUrl":null,"url":null,"abstract":"<div><p>We fabricated 4 × 4 pixel two-dimensional (2D) photodiode array (PDA) out of monolayer graphene and n-type silicon (n-Si) electrodes on a silicon-on-insulator (SOI) substrate. Our device design is based on passive matrix sensor array architecture consisting of individual graphene and silicon electrodes aligned perpendicular to each other. I-V measurements conducted at room temperature to reveal the electronic characteristics of graphene and Si junction in the device structure. The spectral responsivity, respond speed and the optical crosstalk of each G/Si pixels in the array have been determined by wavelength resolved and time dependent photocurrent spectroscopy measurements. Micro-Raman mapping measurements were conducted to examine the surface coverage of graphene electrode on each pixel. The results of Micro-Raman mapping measurements were correlated with the corresponding photocurrent data acquired under light illumination. We believe that this work constitutes a significant potential in integrating variety of 2D materials and SOI technology into next generation image sensing and multiple pixel light detection applications.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-025-08298-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Passive matrix Schottky barrier 2D photodiode array on graphene/SOI platform\",\"authors\":\"Alper Yanilmaz, Özhan Ünverdi, Cem Çelebi\",\"doi\":\"10.1007/s00339-025-08298-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We fabricated 4 × 4 pixel two-dimensional (2D) photodiode array (PDA) out of monolayer graphene and n-type silicon (n-Si) electrodes on a silicon-on-insulator (SOI) substrate. Our device design is based on passive matrix sensor array architecture consisting of individual graphene and silicon electrodes aligned perpendicular to each other. I-V measurements conducted at room temperature to reveal the electronic characteristics of graphene and Si junction in the device structure. The spectral responsivity, respond speed and the optical crosstalk of each G/Si pixels in the array have been determined by wavelength resolved and time dependent photocurrent spectroscopy measurements. Micro-Raman mapping measurements were conducted to examine the surface coverage of graphene electrode on each pixel. The results of Micro-Raman mapping measurements were correlated with the corresponding photocurrent data acquired under light illumination. We believe that this work constitutes a significant potential in integrating variety of 2D materials and SOI technology into next generation image sensing and multiple pixel light detection applications.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 3\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00339-025-08298-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-025-08298-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08298-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Passive matrix Schottky barrier 2D photodiode array on graphene/SOI platform
We fabricated 4 × 4 pixel two-dimensional (2D) photodiode array (PDA) out of monolayer graphene and n-type silicon (n-Si) electrodes on a silicon-on-insulator (SOI) substrate. Our device design is based on passive matrix sensor array architecture consisting of individual graphene and silicon electrodes aligned perpendicular to each other. I-V measurements conducted at room temperature to reveal the electronic characteristics of graphene and Si junction in the device structure. The spectral responsivity, respond speed and the optical crosstalk of each G/Si pixels in the array have been determined by wavelength resolved and time dependent photocurrent spectroscopy measurements. Micro-Raman mapping measurements were conducted to examine the surface coverage of graphene electrode on each pixel. The results of Micro-Raman mapping measurements were correlated with the corresponding photocurrent data acquired under light illumination. We believe that this work constitutes a significant potential in integrating variety of 2D materials and SOI technology into next generation image sensing and multiple pixel light detection applications.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.