等变kk理论的生成和关系图

IF 0.8 Q2 MATHEMATICS
Bernhard Burgstaller
{"title":"等变kk理论的生成和关系图","authors":"Bernhard Burgstaller","doi":"10.1007/s43036-024-00412-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the universal additive category derived from the category of equivariant separable <span>\\(C^*\\)</span>-algebras by introducing homotopy invariance, stability and split-exactness. We show that morphisms in that category permit a particular simple form, thus obtaining the universal property of <span>\\(KK^G\\)</span>-theory for <i>G</i> a locally compact group, or a locally compact groupoid with compact base space, or a countable inverse semigroup as a byproduct.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspects of equivariant KK-theory in its generators and relations picture\",\"authors\":\"Bernhard Burgstaller\",\"doi\":\"10.1007/s43036-024-00412-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the universal additive category derived from the category of equivariant separable <span>\\\\(C^*\\\\)</span>-algebras by introducing homotopy invariance, stability and split-exactness. We show that morphisms in that category permit a particular simple form, thus obtaining the universal property of <span>\\\\(KK^G\\\\)</span>-theory for <i>G</i> a locally compact group, or a locally compact groupoid with compact base space, or a countable inverse semigroup as a byproduct.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00412-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00412-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过引入同伦不变性、稳定性和分裂精确性,研究了由等变可分代数\(C^*\) -范畴导出的全称可加范畴。我们证明了该范畴中的态射允许一个特殊的简单形式,从而得到了G的局部紧群,或具有紧基空间的局部紧群,或副产物为可数逆半群的\(KK^G\) -理论的通称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspects of equivariant KK-theory in its generators and relations picture

We consider the universal additive category derived from the category of equivariant separable \(C^*\)-algebras by introducing homotopy invariance, stability and split-exactness. We show that morphisms in that category permit a particular simple form, thus obtaining the universal property of \(KK^G\)-theory for G a locally compact group, or a locally compact groupoid with compact base space, or a countable inverse semigroup as a byproduct.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信