含丰富氧空位†的铅铈共掺杂TiO2光催化甲醇-水溶液制氢

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zhongming Hao and Xinghong Duo
{"title":"含丰富氧空位†的铅铈共掺杂TiO2光催化甲醇-水溶液制氢","authors":"Zhongming Hao and Xinghong Duo","doi":"10.1039/D4NJ04273E","DOIUrl":null,"url":null,"abstract":"<p >Enhancing photocatalytic performance relies on efficient and stable solar energy utilization, broadening visible light absorption, and optimizing interfacial charge transfer mechanisms. We successfully synthesized lead–cerium co-doped TiO<small><sub>2</sub></small> enriched with oxygen vacancies (Ti<small><sup><em>δ</em>+</sup></small>–O<small><sub>v</sub></small>(–Ce<small><sup><em>δ</em>+</sup></small>)–Pb<small><sup>2+</sup></small>) using sol–gel and direct addition methods. Results show that Pb<small><sup>2+</sup></small> ions are uniformly distributed within the oxygen vacancy-rich TiO<small><sub>2</sub></small> lattice, synergizing with surface-embedded Ce<small><sup>2+</sup></small>/Ce<small><sup>3+</sup></small> ions to extend the visible light absorption range of TiO<small><sub>2</sub></small>. This led to a 32.3% increase in light absorption and an approximate 90% improvement in photoelectric conversion efficiency. The maximum photocurrent density reached 3.1 μA cm<small><sup>−2</sup></small>, with a reduction of 0.15 eV in the initial oxidation potential and a 30% decrease in bandgap width. Under simulated sunlight (AM 1.5G), the hydrogen production rate of Ti<small><sup><em>δ</em>+</sup></small>–O<small><sub>v</sub></small>(–Ce<small><sup><em>δ</em>+</sup></small>)–Pb<small><sup>2+</sup></small> was 11.516 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>, double the combined output of TiO<small><sub>2</sub></small>–Ce and TiO<small><sub>2</sub></small>–Pb. Mechanistic analysis reveals that the superior performance stems from the interfacial sites in Ti<small><sup><em>δ</em>+</sup></small>–O<small><sub>v</sub></small>(–Ce<small><sup><em>δ</em>+</sup></small>)–Pb<small><sup>2+</sup></small>, where the low-valent Pb<small><sup>2+</sup></small> and variable-valent Ce<small><sup>3+</sup></small>/Ce<small><sup>4+</sup></small> ions act as charge traps that promote efficient charge separation. Furthermore, surface-embedded Ce generates an uneven surface potential, facilitating the adsorption of formaldehyde molecules from the solution onto the modified TiO<small><sub>2</sub></small> surface and improving carrier dynamics. These findings provide new strategies for designing and optimizing high-efficiency photocatalytic materials.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 6","pages":" 2161-2176"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced hydrogen production from methanol–water solutions via photocatalysis using lead–cerium co-doped TiO2 with abundant oxygen vacancies†\",\"authors\":\"Zhongming Hao and Xinghong Duo\",\"doi\":\"10.1039/D4NJ04273E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Enhancing photocatalytic performance relies on efficient and stable solar energy utilization, broadening visible light absorption, and optimizing interfacial charge transfer mechanisms. We successfully synthesized lead–cerium co-doped TiO<small><sub>2</sub></small> enriched with oxygen vacancies (Ti<small><sup><em>δ</em>+</sup></small>–O<small><sub>v</sub></small>(–Ce<small><sup><em>δ</em>+</sup></small>)–Pb<small><sup>2+</sup></small>) using sol–gel and direct addition methods. Results show that Pb<small><sup>2+</sup></small> ions are uniformly distributed within the oxygen vacancy-rich TiO<small><sub>2</sub></small> lattice, synergizing with surface-embedded Ce<small><sup>2+</sup></small>/Ce<small><sup>3+</sup></small> ions to extend the visible light absorption range of TiO<small><sub>2</sub></small>. This led to a 32.3% increase in light absorption and an approximate 90% improvement in photoelectric conversion efficiency. The maximum photocurrent density reached 3.1 μA cm<small><sup>−2</sup></small>, with a reduction of 0.15 eV in the initial oxidation potential and a 30% decrease in bandgap width. Under simulated sunlight (AM 1.5G), the hydrogen production rate of Ti<small><sup><em>δ</em>+</sup></small>–O<small><sub>v</sub></small>(–Ce<small><sup><em>δ</em>+</sup></small>)–Pb<small><sup>2+</sup></small> was 11.516 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>, double the combined output of TiO<small><sub>2</sub></small>–Ce and TiO<small><sub>2</sub></small>–Pb. Mechanistic analysis reveals that the superior performance stems from the interfacial sites in Ti<small><sup><em>δ</em>+</sup></small>–O<small><sub>v</sub></small>(–Ce<small><sup><em>δ</em>+</sup></small>)–Pb<small><sup>2+</sup></small>, where the low-valent Pb<small><sup>2+</sup></small> and variable-valent Ce<small><sup>3+</sup></small>/Ce<small><sup>4+</sup></small> ions act as charge traps that promote efficient charge separation. Furthermore, surface-embedded Ce generates an uneven surface potential, facilitating the adsorption of formaldehyde molecules from the solution onto the modified TiO<small><sub>2</sub></small> surface and improving carrier dynamics. These findings provide new strategies for designing and optimizing high-efficiency photocatalytic materials.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 6\",\"pages\":\" 2161-2176\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04273e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04273e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高光催化性能依赖于高效稳定的太阳能利用、扩大可见光吸收和优化界面电荷转移机制。采用溶胶-凝胶法和直接加成法成功合成了富氧空位的铅铈共掺杂TiO2 (Tiδ+ -Ov (-Ceδ +) -Pb2 +)。结果表明,Pb2+离子均匀分布在富氧空位的TiO2晶格内,与表面嵌入的Ce2+/Ce3+离子协同作用,扩大了TiO2的可见光吸收范围。这导致光吸收增加了32.3%,光电转换效率提高了约90%。最大光电流密度达到3.1 μA cm−2,初始氧化电位降低0.15 eV,带隙宽度减小30%。在模拟日光(AM 1.5G)下,Tiδ+ -Ov (-Ceδ +) -Pb2 +的产氢速率为11.516 μmol h−1 g−1,是TiO2-Ce和TiO2-Pb的两倍。机理分析表明,优异的性能源于Tiδ+ -Ov (-Ceδ +) -Pb2 +的界面位点,其中低价的Pb2+和可变价的Ce3+/Ce4+离子充当电荷阱,促进了有效的电荷分离。此外,表面嵌入的Ce产生了不均匀的表面电位,有利于甲醛分子从溶液中吸附到修饰后的TiO2表面,改善了载流子动力学。这些发现为设计和优化高效光催化材料提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced hydrogen production from methanol–water solutions via photocatalysis using lead–cerium co-doped TiO2 with abundant oxygen vacancies†

Enhanced hydrogen production from methanol–water solutions via photocatalysis using lead–cerium co-doped TiO2 with abundant oxygen vacancies†

Enhancing photocatalytic performance relies on efficient and stable solar energy utilization, broadening visible light absorption, and optimizing interfacial charge transfer mechanisms. We successfully synthesized lead–cerium co-doped TiO2 enriched with oxygen vacancies (Tiδ+–Ov(–Ceδ+)–Pb2+) using sol–gel and direct addition methods. Results show that Pb2+ ions are uniformly distributed within the oxygen vacancy-rich TiO2 lattice, synergizing with surface-embedded Ce2+/Ce3+ ions to extend the visible light absorption range of TiO2. This led to a 32.3% increase in light absorption and an approximate 90% improvement in photoelectric conversion efficiency. The maximum photocurrent density reached 3.1 μA cm−2, with a reduction of 0.15 eV in the initial oxidation potential and a 30% decrease in bandgap width. Under simulated sunlight (AM 1.5G), the hydrogen production rate of Tiδ+–Ov(–Ceδ+)–Pb2+ was 11.516 μmol h−1 g−1, double the combined output of TiO2–Ce and TiO2–Pb. Mechanistic analysis reveals that the superior performance stems from the interfacial sites in Tiδ+–Ov(–Ceδ+)–Pb2+, where the low-valent Pb2+ and variable-valent Ce3+/Ce4+ ions act as charge traps that promote efficient charge separation. Furthermore, surface-embedded Ce generates an uneven surface potential, facilitating the adsorption of formaldehyde molecules from the solution onto the modified TiO2 surface and improving carrier dynamics. These findings provide new strategies for designing and optimizing high-efficiency photocatalytic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信