监测风和颗粒浓度附近的淡水和海洋有害藻华(HABs)†

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Landon Bilyeu, Javier González-Rocha, Regina Hanlon, Noora AlAmiri, Hosein Foroutan, Kun Alading, Shane D. Ross and David G. Schmale
{"title":"监测风和颗粒浓度附近的淡水和海洋有害藻华(HABs)†","authors":"Landon Bilyeu, Javier González-Rocha, Regina Hanlon, Noora AlAmiri, Hosein Foroutan, Kun Alading, Shane D. Ross and David G. Schmale","doi":"10.1039/D4VA00172A","DOIUrl":null,"url":null,"abstract":"<p >Harmful algal blooms (HABs) are a threat to aquatic ecosystems worldwide. New information is needed about the environmental conditions associated with the aerosolization and transport of HAB cells and their associated toxins. This information is critical to help inform our understanding of potential exposures. We used a ground-based sensor package to monitor weather, measure airborne particles, and collect air samples on the shore of a freshwater HAB (bloom of predominantly <em>Rhaphidiopsis</em>, Lake Anna, Virginia) and a marine HAB (bloom of <em>Karenia brevis</em>, Gulf Coast, Florida). Each sensor package contained a sonic anemometer, impinger, and optical particle counter. A drone was used to measure vertical profiles of windspeed and wind direction at the shore and above the freshwater HAB. At the Florida sites, airborne particle number concentrations (cm<small><sup>−3</sup></small>) increased throughout the day and the wind direction (offshore <em>versus</em> onshore) was strongly associated with these particle number concentrations (cm<small><sup>−3</sup></small>). Offshore wind sources had particle number concentrations (cm<small><sup>−3</sup></small>) 3 to 4 times higher than those of onshore wind sources. A predictive model, trained on a random set of weather and particle number concentrations (cm<small><sup>−3</sup></small>) collected over the same time period, was able to predict airborne particle number concentrations (cm<small><sup>−3</sup></small>) with an <em>R</em> squared value of 0.581 for the freshwater HAB in Virginia and an <em>R</em> squared value of 0.804 for the marine HAB in Florida. The drone-based vertical profiles of the wind velocity showed differences in wind speed and direction at different altitudes, highlighting the need for wind measurements at multiple heights to capture environmental conditions driving the atmospheric transport of aerosolized HAB toxins. A surface flux equation was used to determine the rate of aerosol production at the beach sites based on the measured particle number concentrations (cm<small><sup>−3</sup></small>) and weather conditions. Additional work is needed to better understand the short-term fate and transport of aerosolized cyanobacterial cells and toxins and how this is influenced by local weather conditions.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 2","pages":" 279-291"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00172a?page=search","citationCount":"0","resultStr":"{\"title\":\"Monitoring wind and particle concentrations near freshwater and marine harmful algal blooms (HABs)†\",\"authors\":\"Landon Bilyeu, Javier González-Rocha, Regina Hanlon, Noora AlAmiri, Hosein Foroutan, Kun Alading, Shane D. Ross and David G. Schmale\",\"doi\":\"10.1039/D4VA00172A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Harmful algal blooms (HABs) are a threat to aquatic ecosystems worldwide. New information is needed about the environmental conditions associated with the aerosolization and transport of HAB cells and their associated toxins. This information is critical to help inform our understanding of potential exposures. We used a ground-based sensor package to monitor weather, measure airborne particles, and collect air samples on the shore of a freshwater HAB (bloom of predominantly <em>Rhaphidiopsis</em>, Lake Anna, Virginia) and a marine HAB (bloom of <em>Karenia brevis</em>, Gulf Coast, Florida). Each sensor package contained a sonic anemometer, impinger, and optical particle counter. A drone was used to measure vertical profiles of windspeed and wind direction at the shore and above the freshwater HAB. At the Florida sites, airborne particle number concentrations (cm<small><sup>−3</sup></small>) increased throughout the day and the wind direction (offshore <em>versus</em> onshore) was strongly associated with these particle number concentrations (cm<small><sup>−3</sup></small>). Offshore wind sources had particle number concentrations (cm<small><sup>−3</sup></small>) 3 to 4 times higher than those of onshore wind sources. A predictive model, trained on a random set of weather and particle number concentrations (cm<small><sup>−3</sup></small>) collected over the same time period, was able to predict airborne particle number concentrations (cm<small><sup>−3</sup></small>) with an <em>R</em> squared value of 0.581 for the freshwater HAB in Virginia and an <em>R</em> squared value of 0.804 for the marine HAB in Florida. The drone-based vertical profiles of the wind velocity showed differences in wind speed and direction at different altitudes, highlighting the need for wind measurements at multiple heights to capture environmental conditions driving the atmospheric transport of aerosolized HAB toxins. A surface flux equation was used to determine the rate of aerosol production at the beach sites based on the measured particle number concentrations (cm<small><sup>−3</sup></small>) and weather conditions. Additional work is needed to better understand the short-term fate and transport of aerosolized cyanobacterial cells and toxins and how this is influenced by local weather conditions.</p>\",\"PeriodicalId\":72941,\"journal\":{\"name\":\"Environmental science. Advances\",\"volume\":\" 2\",\"pages\":\" 279-291\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00172a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science. Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/va/d4va00172a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/va/d4va00172a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

有害藻华(HABs)对全球水生生态系统构成威胁。需要新的信息来了解与有害藻华细胞及其相关毒素的雾化和运输有关的环境条件。这些信息对于帮助我们了解潜在的暴露至关重要。我们使用了一个地面传感器包来监测天气,测量空气中的颗粒,并在一个淡水HAB(主要是Rhaphidiopsis,弗吉尼亚州的安娜湖)和一个海洋HAB(短暂的Karenia,佛罗里达州的墨西哥湾沿岸)的岸边收集空气样本。每个传感器包包含一个声速计、冲击器和光学粒子计数器。一架无人机被用来测量海岸和淡水赤潮上方的风速和风向的垂直剖面。在佛罗里达州的站点,空气中的颗粒数浓度(cm - 3)全天都在增加,风向(海上与陆上)与这些颗粒数浓度(cm - 3)密切相关。海上风源的颗粒数浓度(cm−3)是陆上风源的3 ~ 4倍。在同一时期收集的随机天气和颗粒数浓度(cm - 3)上训练的预测模型能够预测空气中的颗粒数浓度(cm - 3),其R平方值为弗吉尼亚州淡水有害藻华的0.581,佛罗里达州海洋有害藻华的R平方值为0.804。基于无人机的风速垂直剖面显示,不同高度的风速和风向存在差异,这突出表明需要在多个高度进行风速测量,以捕捉驱动雾化的有害藻华毒素在大气中运输的环境条件。根据测量到的颗粒数浓度(cm−3)和天气条件,使用了一个表面通量方程来确定海滩地点的气溶胶产生率。需要进一步的工作来更好地了解雾化蓝藻细胞和毒素的短期命运和运输,以及这如何受到当地天气条件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monitoring wind and particle concentrations near freshwater and marine harmful algal blooms (HABs)†

Monitoring wind and particle concentrations near freshwater and marine harmful algal blooms (HABs)†

Harmful algal blooms (HABs) are a threat to aquatic ecosystems worldwide. New information is needed about the environmental conditions associated with the aerosolization and transport of HAB cells and their associated toxins. This information is critical to help inform our understanding of potential exposures. We used a ground-based sensor package to monitor weather, measure airborne particles, and collect air samples on the shore of a freshwater HAB (bloom of predominantly Rhaphidiopsis, Lake Anna, Virginia) and a marine HAB (bloom of Karenia brevis, Gulf Coast, Florida). Each sensor package contained a sonic anemometer, impinger, and optical particle counter. A drone was used to measure vertical profiles of windspeed and wind direction at the shore and above the freshwater HAB. At the Florida sites, airborne particle number concentrations (cm−3) increased throughout the day and the wind direction (offshore versus onshore) was strongly associated with these particle number concentrations (cm−3). Offshore wind sources had particle number concentrations (cm−3) 3 to 4 times higher than those of onshore wind sources. A predictive model, trained on a random set of weather and particle number concentrations (cm−3) collected over the same time period, was able to predict airborne particle number concentrations (cm−3) with an R squared value of 0.581 for the freshwater HAB in Virginia and an R squared value of 0.804 for the marine HAB in Florida. The drone-based vertical profiles of the wind velocity showed differences in wind speed and direction at different altitudes, highlighting the need for wind measurements at multiple heights to capture environmental conditions driving the atmospheric transport of aerosolized HAB toxins. A surface flux equation was used to determine the rate of aerosol production at the beach sites based on the measured particle number concentrations (cm−3) and weather conditions. Additional work is needed to better understand the short-term fate and transport of aerosolized cyanobacterial cells and toxins and how this is influenced by local weather conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信