基于谐波畸变效应的永磁直线电机功率因数特性研究与分析

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Dingying Wu;Jin Xu
{"title":"基于谐波畸变效应的永磁直线电机功率因数特性研究与分析","authors":"Dingying Wu;Jin Xu","doi":"10.1109/TMAG.2024.3519168","DOIUrl":null,"url":null,"abstract":"This article investigates the power factor characteristics of the permanent magnet linear machine (PMLM) with the modulation ratio effect (MRE). Due to the machine MRE, the PMLM has more effective harmonics for the thrust force production, but it also has lower PF value. To investigate the relationship between the power factor and MRE, the power factor has been derived under different control strategies, the lower power factor in machine has been revealed, and the harmonic distortion ratio has been defined. Then, the magnetic field and the harmonic distortion of different permanent magnet (PM) machine topologies have been analyzed and compared; eight models with various combinations of slot and pole have been compared and evaluated. Finally, both the 12-slot/10-pole and 12-slot/14-pole combinations have lower <inline-formula> <tex-math>$k_{\\text {MR}}$ </tex-math></inline-formula> and higher power factor, and the research results have provided the feasibility of the proposed method, which provides an approach in the power factor optimization and machine design.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and Analysis of Power Factor Characteristics Based on the Harmonic Distortion Effect for the Permanent Magnet Linear Machine\",\"authors\":\"Dingying Wu;Jin Xu\",\"doi\":\"10.1109/TMAG.2024.3519168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the power factor characteristics of the permanent magnet linear machine (PMLM) with the modulation ratio effect (MRE). Due to the machine MRE, the PMLM has more effective harmonics for the thrust force production, but it also has lower PF value. To investigate the relationship between the power factor and MRE, the power factor has been derived under different control strategies, the lower power factor in machine has been revealed, and the harmonic distortion ratio has been defined. Then, the magnetic field and the harmonic distortion of different permanent magnet (PM) machine topologies have been analyzed and compared; eight models with various combinations of slot and pole have been compared and evaluated. Finally, both the 12-slot/10-pole and 12-slot/14-pole combinations have lower <inline-formula> <tex-math>$k_{\\\\text {MR}}$ </tex-math></inline-formula> and higher power factor, and the research results have provided the feasibility of the proposed method, which provides an approach in the power factor optimization and machine design.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 2\",\"pages\":\"1-5\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804840/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804840/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了调制比效应(MRE)下永磁直线电机的功率因数特性。由于机器的MRE, PMLM对推力产生有更有效的谐波,但它也有更低的PF值。为了研究功率因数与MRE之间的关系,推导了不同控制策略下的功率因数,揭示了电机的较低功率因数,并定义了谐波失真率。然后,对不同拓扑结构的永磁电机磁场和谐波畸变进行了分析和比较;对8种不同槽极组合的模型进行了比较和评价。最后,12槽/10极和12槽/14极组合均具有较低的$k_{\text {MR}}$和较高的功率因数,研究结果证明了所提方法的可行性,为功率因数优化和整机设计提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation and Analysis of Power Factor Characteristics Based on the Harmonic Distortion Effect for the Permanent Magnet Linear Machine
This article investigates the power factor characteristics of the permanent magnet linear machine (PMLM) with the modulation ratio effect (MRE). Due to the machine MRE, the PMLM has more effective harmonics for the thrust force production, but it also has lower PF value. To investigate the relationship between the power factor and MRE, the power factor has been derived under different control strategies, the lower power factor in machine has been revealed, and the harmonic distortion ratio has been defined. Then, the magnetic field and the harmonic distortion of different permanent magnet (PM) machine topologies have been analyzed and compared; eight models with various combinations of slot and pole have been compared and evaluated. Finally, both the 12-slot/10-pole and 12-slot/14-pole combinations have lower $k_{\text {MR}}$ and higher power factor, and the research results have provided the feasibility of the proposed method, which provides an approach in the power factor optimization and machine design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信