{"title":"应用晶粒取向电工钢改善电动汽车推进用绕线磁场同步电动机性能","authors":"Ho-Jin Oh;Jae-Hoon Cho;Young-Ho Hwang;Yongmin Kim;Seok-Won Jung;Sang-Yong Jung","doi":"10.1109/TMAG.2024.3518457","DOIUrl":null,"url":null,"abstract":"This study investigates the performance enhancement of wound field synchronous motors (WFSMs) through a design method that incorporates grain-oriented electrical steel (GOES). Cross-magnetization, resulting from the overlapping fluxes of the d- and q-axes, occurs within the rotor of the WFSM. Consequently, rotor design must enable optimal utilization of cross-magnetization to enhance electromagnetic performance. This study proposes an approach that uses the magnetic properties aligned with the easy axis of GOES, aiming to improve cross-magnetization utilization and reduce copper loss. Electromagnetic torque improvements are demonstrated by analyzing the magnetic flux path in comparison to models using non-oriented electrical steel (NOES). Furthermore, the role of cross-magnetization in performance enhancement is examined through a detailed analysis of the easy axis of GOES. Finally, the superiority of GOES is established through optimal rotor designs based on the type of electrical steel applied.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-4"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Improvement of Wound Field Synchronous Motor for EV Propulsion Applying Grain-Oriented Electrical Steel\",\"authors\":\"Ho-Jin Oh;Jae-Hoon Cho;Young-Ho Hwang;Yongmin Kim;Seok-Won Jung;Sang-Yong Jung\",\"doi\":\"10.1109/TMAG.2024.3518457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the performance enhancement of wound field synchronous motors (WFSMs) through a design method that incorporates grain-oriented electrical steel (GOES). Cross-magnetization, resulting from the overlapping fluxes of the d- and q-axes, occurs within the rotor of the WFSM. Consequently, rotor design must enable optimal utilization of cross-magnetization to enhance electromagnetic performance. This study proposes an approach that uses the magnetic properties aligned with the easy axis of GOES, aiming to improve cross-magnetization utilization and reduce copper loss. Electromagnetic torque improvements are demonstrated by analyzing the magnetic flux path in comparison to models using non-oriented electrical steel (NOES). Furthermore, the role of cross-magnetization in performance enhancement is examined through a detailed analysis of the easy axis of GOES. Finally, the superiority of GOES is established through optimal rotor designs based on the type of electrical steel applied.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 2\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10802946/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10802946/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Improvement of Wound Field Synchronous Motor for EV Propulsion Applying Grain-Oriented Electrical Steel
This study investigates the performance enhancement of wound field synchronous motors (WFSMs) through a design method that incorporates grain-oriented electrical steel (GOES). Cross-magnetization, resulting from the overlapping fluxes of the d- and q-axes, occurs within the rotor of the WFSM. Consequently, rotor design must enable optimal utilization of cross-magnetization to enhance electromagnetic performance. This study proposes an approach that uses the magnetic properties aligned with the easy axis of GOES, aiming to improve cross-magnetization utilization and reduce copper loss. Electromagnetic torque improvements are demonstrated by analyzing the magnetic flux path in comparison to models using non-oriented electrical steel (NOES). Furthermore, the role of cross-magnetization in performance enhancement is examined through a detailed analysis of the easy axis of GOES. Finally, the superiority of GOES is established through optimal rotor designs based on the type of electrical steel applied.
期刊介绍:
Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.