基于超表面的新型天线研究进展

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wanchen Yang;Jinghao Li;Dongxu Chen;Yue Cao;Quan Xue;Wenquan Che
{"title":"基于超表面的新型天线研究进展","authors":"Wanchen Yang;Jinghao Li;Dongxu Chen;Yue Cao;Quan Xue;Wenquan Che","doi":"10.1109/OJAP.2024.3465513","DOIUrl":null,"url":null,"abstract":"As one kind of two-dimensional metamaterials, metasurface structures are widely applied in antennas due to the special abilities of manipulating the amplitude, phase, polarization states and the propagation modes of electromagnetic wave. This article briefly presents a series of combinations of metasurface and antennas from the perspective of design methods and innovative features, which are divided into three sections: performance improvement, function manipulation and other applications. In the section of performance improvement, three typical applications of metasurface are presented, including using non-periodic metasurfaces to raise aperture efficiency, introducing multi-mode resonance metasurfaces to expand bandwidth, and introducing capacitive loading metasurfaces for miniaturization. As for function manipulation, due to the high design freedom of metasurface, multi-polarization reconfigurability can be achieved by changing the surface impedance distribution. Moreover, it can be used as radiators and excited by traveling wave to achieve beam steering or combined with phase change materials to realize frequency reconfiguration. The last part is about the further applications of metasurface, including multi-folding reflectarray/transmitarray, wide-angle scanning phased array antenna, and filtering antenna. In conclusion, the researches of metasurface have overcome the shortcomings of conventional antennas and proposed some good solutions to realize innovative antennas.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"6-24"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10685482","citationCount":"0","resultStr":"{\"title\":\"Advanced Metasurface-Based Antennas: A Review\",\"authors\":\"Wanchen Yang;Jinghao Li;Dongxu Chen;Yue Cao;Quan Xue;Wenquan Che\",\"doi\":\"10.1109/OJAP.2024.3465513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one kind of two-dimensional metamaterials, metasurface structures are widely applied in antennas due to the special abilities of manipulating the amplitude, phase, polarization states and the propagation modes of electromagnetic wave. This article briefly presents a series of combinations of metasurface and antennas from the perspective of design methods and innovative features, which are divided into three sections: performance improvement, function manipulation and other applications. In the section of performance improvement, three typical applications of metasurface are presented, including using non-periodic metasurfaces to raise aperture efficiency, introducing multi-mode resonance metasurfaces to expand bandwidth, and introducing capacitive loading metasurfaces for miniaturization. As for function manipulation, due to the high design freedom of metasurface, multi-polarization reconfigurability can be achieved by changing the surface impedance distribution. Moreover, it can be used as radiators and excited by traveling wave to achieve beam steering or combined with phase change materials to realize frequency reconfiguration. The last part is about the further applications of metasurface, including multi-folding reflectarray/transmitarray, wide-angle scanning phased array antenna, and filtering antenna. In conclusion, the researches of metasurface have overcome the shortcomings of conventional antennas and proposed some good solutions to realize innovative antennas.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"6 1\",\"pages\":\"6-24\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10685482\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10685482/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685482/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

超表面结构作为一种二维超材料,由于其具有控制电磁波振幅、相位、极化状态和传播方式的特殊能力,在天线中得到了广泛的应用。本文从设计方法和创新特征的角度简要介绍了超表面与天线的一系列组合,分为性能改进、功能操作和其他应用三个部分。在性能改进部分,介绍了三种典型的超表面应用,包括使用非周期超表面来提高孔径效率,引入多模共振超表面来扩大带宽,以及引入电容加载超表面来实现小型化。在功能操作方面,由于超表面具有较高的设计自由度,可以通过改变表面阻抗分布实现多极化可重构性。此外,它可以作为辐射体,通过行波激励实现波束导向或与相变材料结合实现频率重构。最后介绍了超表面的进一步应用,包括多折叠反射/发射阵列、广角扫描相控阵天线和滤波天线。综上所述,超表面的研究克服了传统天线的不足,为实现创新天线提出了一些很好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Metasurface-Based Antennas: A Review
As one kind of two-dimensional metamaterials, metasurface structures are widely applied in antennas due to the special abilities of manipulating the amplitude, phase, polarization states and the propagation modes of electromagnetic wave. This article briefly presents a series of combinations of metasurface and antennas from the perspective of design methods and innovative features, which are divided into three sections: performance improvement, function manipulation and other applications. In the section of performance improvement, three typical applications of metasurface are presented, including using non-periodic metasurfaces to raise aperture efficiency, introducing multi-mode resonance metasurfaces to expand bandwidth, and introducing capacitive loading metasurfaces for miniaturization. As for function manipulation, due to the high design freedom of metasurface, multi-polarization reconfigurability can be achieved by changing the surface impedance distribution. Moreover, it can be used as radiators and excited by traveling wave to achieve beam steering or combined with phase change materials to realize frequency reconfiguration. The last part is about the further applications of metasurface, including multi-folding reflectarray/transmitarray, wide-angle scanning phased array antenna, and filtering antenna. In conclusion, the researches of metasurface have overcome the shortcomings of conventional antennas and proposed some good solutions to realize innovative antennas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信