非线性脉冲成形线应用中100 ~ 400k铁磁和多铁磁陶瓷的磁滞特性

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Travis D. Crawford;Andrew J. Romes;Somnath Sengupta;Allen L. Garner
{"title":"非线性脉冲成形线应用中100 ~ 400k铁磁和多铁磁陶瓷的磁滞特性","authors":"Travis D. Crawford;Andrew J. Romes;Somnath Sengupta;Allen L. Garner","doi":"10.1109/TMAG.2024.3524335","DOIUrl":null,"url":null,"abstract":"Microwave generation in ferromagnetic nonlinear pulse forming lines (NPFLs) depends strongly on material properties, particularly the damped gyromagnetic precession of a ferrite’s magnetic moments. Additionally, temperature-dependent material properties, such as saturation magnetization and coercivity, are critical for assuring stable operation due to their influence on the output center frequency. In this study, we measured the temperature-dependent hysteresis behavior of both ferrous and multiferroic composites for NPFL applications. We manufactured ferrous materials [nickel zinc ferrite (NZF), yttrium iron garnet (YIG), and cobalt ferrite (CoFe)] using the standard ceramic processing methods and characterized them from 100 to 400 K using vibrating sample magnetometry. Additionally, multiferroic materials were manufactured by adding barium strontium titanate (BST) and were characterized using the same methods. Most ferroic and multiferroic samples agree with Kneller’s and Bloch’s laws, which state that the temperature-dependent coercivity and saturation magnetization vary as <inline-formula> <tex-math>$T^{1/2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${T}^{3/2}$ </tex-math></inline-formula>, respectively. Cobalt samples deviated slightly from Kneller’s law, while NZF deviated from Bloch’s law at temperatures below 200 K. For all samples, saturation magnetization decreased with increasing temperature and coercivity increased with decreasing temperature. These results provide a baseline analysis into temperature-dependent material properties for NPFL applications.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetic Hysteresis Behavior of Ferroic and Multiferroic Ceramics From 100 to 400 K for Nonlinear Pulse Forming Line Applications\",\"authors\":\"Travis D. Crawford;Andrew J. Romes;Somnath Sengupta;Allen L. Garner\",\"doi\":\"10.1109/TMAG.2024.3524335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave generation in ferromagnetic nonlinear pulse forming lines (NPFLs) depends strongly on material properties, particularly the damped gyromagnetic precession of a ferrite’s magnetic moments. Additionally, temperature-dependent material properties, such as saturation magnetization and coercivity, are critical for assuring stable operation due to their influence on the output center frequency. In this study, we measured the temperature-dependent hysteresis behavior of both ferrous and multiferroic composites for NPFL applications. We manufactured ferrous materials [nickel zinc ferrite (NZF), yttrium iron garnet (YIG), and cobalt ferrite (CoFe)] using the standard ceramic processing methods and characterized them from 100 to 400 K using vibrating sample magnetometry. Additionally, multiferroic materials were manufactured by adding barium strontium titanate (BST) and were characterized using the same methods. Most ferroic and multiferroic samples agree with Kneller’s and Bloch’s laws, which state that the temperature-dependent coercivity and saturation magnetization vary as <inline-formula> <tex-math>$T^{1/2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${T}^{3/2}$ </tex-math></inline-formula>, respectively. Cobalt samples deviated slightly from Kneller’s law, while NZF deviated from Bloch’s law at temperatures below 200 K. For all samples, saturation magnetization decreased with increasing temperature and coercivity increased with decreasing temperature. These results provide a baseline analysis into temperature-dependent material properties for NPFL applications.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 2\",\"pages\":\"1-6\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818698/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10818698/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在铁磁非线性脉冲形成线(NPFLs)中,微波的产生很大程度上取决于材料的性质,特别是铁氧体磁矩的阻尼旋磁进动。此外,与温度相关的材料特性,如饱和磁化和矫顽力,对确保稳定运行至关重要,因为它们会影响输出中心频率。在这项研究中,我们测量了用于NPFL应用的铁和多铁复合材料的温度依赖性滞后行为。我们使用标准的陶瓷加工方法制备了含铁材料[镍锌铁氧体(NZF),钇铁石榴石(YIG)和钴铁氧体(CoFe)],并使用振动样品磁强计在100至400 K范围内对它们进行了表征。此外,通过添加钛酸锶钡(BST)制备了多铁材料,并采用相同的方法对其进行了表征。大多数铁质和多铁质样品符合Kneller和Bloch定律,即温度相关的矫顽力和饱和磁化强度分别为$T^{1/2}$和${T}^{3/2}$。在200 K以下的温度下,钴样品略微偏离Kneller定律,而NZF则偏离Bloch定律。所有样品的饱和磁化强度随温度升高而降低,矫顽力随温度降低而升高。这些结果为NPFL应用中与温度相关的材料特性提供了基线分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferromagnetic Hysteresis Behavior of Ferroic and Multiferroic Ceramics From 100 to 400 K for Nonlinear Pulse Forming Line Applications
Microwave generation in ferromagnetic nonlinear pulse forming lines (NPFLs) depends strongly on material properties, particularly the damped gyromagnetic precession of a ferrite’s magnetic moments. Additionally, temperature-dependent material properties, such as saturation magnetization and coercivity, are critical for assuring stable operation due to their influence on the output center frequency. In this study, we measured the temperature-dependent hysteresis behavior of both ferrous and multiferroic composites for NPFL applications. We manufactured ferrous materials [nickel zinc ferrite (NZF), yttrium iron garnet (YIG), and cobalt ferrite (CoFe)] using the standard ceramic processing methods and characterized them from 100 to 400 K using vibrating sample magnetometry. Additionally, multiferroic materials were manufactured by adding barium strontium titanate (BST) and were characterized using the same methods. Most ferroic and multiferroic samples agree with Kneller’s and Bloch’s laws, which state that the temperature-dependent coercivity and saturation magnetization vary as $T^{1/2}$ and ${T}^{3/2}$ , respectively. Cobalt samples deviated slightly from Kneller’s law, while NZF deviated from Bloch’s law at temperatures below 200 K. For all samples, saturation magnetization decreased with increasing temperature and coercivity increased with decreasing temperature. These results provide a baseline analysis into temperature-dependent material properties for NPFL applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信