基于公交的城市传感移动标定

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hassan Zarrar;Max Limbu;Shyqyri Haxha;Vladimir Dyo
{"title":"基于公交的城市传感移动标定","authors":"Hassan Zarrar;Max Limbu;Shyqyri Haxha;Vladimir Dyo","doi":"10.1109/JSEN.2024.3518093","DOIUrl":null,"url":null,"abstract":"In bus-based sensing, public transport serves as a mobile urban sensing platform. While offering much higher geographical coverage, the low-cost sensors mounted on vehicles can be less accurate and demand more frequent calibration, which may be challenging for large vehicle fleets. As calibration is performed by relating mobile sensor readings to those of fixed reference stations, the placement of reference stations is very important. In this work, we propose an algorithm for computing the optimal locations for reference stations to maximize the sensing coverage. Contrary to prior work, coverage is defined in terms of geographical area, extending a certain distance away from the route trajectory, which represents the actual sensing capacity of the vehicles. The proposed algorithm computes it using geographical set operations, such as spatial join and subtraction to compute the unique contribution of each bus route. We evaluate the approach using real bus trajectories from Manhattan, USA, and compare it with a random baseline and prior work. The results indicate that given the bus routes, a complete sensing coverage can be achieved using a single reference station with a maximum 2-hop calibration path.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 3","pages":"5576-5583"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Calibration for Bus-Based Urban Sensing\",\"authors\":\"Hassan Zarrar;Max Limbu;Shyqyri Haxha;Vladimir Dyo\",\"doi\":\"10.1109/JSEN.2024.3518093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bus-based sensing, public transport serves as a mobile urban sensing platform. While offering much higher geographical coverage, the low-cost sensors mounted on vehicles can be less accurate and demand more frequent calibration, which may be challenging for large vehicle fleets. As calibration is performed by relating mobile sensor readings to those of fixed reference stations, the placement of reference stations is very important. In this work, we propose an algorithm for computing the optimal locations for reference stations to maximize the sensing coverage. Contrary to prior work, coverage is defined in terms of geographical area, extending a certain distance away from the route trajectory, which represents the actual sensing capacity of the vehicles. The proposed algorithm computes it using geographical set operations, such as spatial join and subtraction to compute the unique contribution of each bus route. We evaluate the approach using real bus trajectories from Manhattan, USA, and compare it with a random baseline and prior work. The results indicate that given the bus routes, a complete sensing coverage can be achieved using a single reference station with a maximum 2-hop calibration path.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 3\",\"pages\":\"5576-5583\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10811826/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10811826/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在基于公交的传感中,公共交通是一个移动的城市传感平台。虽然可以提供更高的地理覆盖范围,但安装在车辆上的低成本传感器可能不太准确,需要更频繁的校准,这对大型车队来说可能是一个挑战。由于校准是通过将移动传感器的读数与固定参考站的读数相关联来进行的,因此参考站的放置非常重要。在这项工作中,我们提出了一种算法来计算参考站的最佳位置,以最大化传感覆盖。与之前的工作不同,覆盖范围是根据地理区域来定义的,从路线轨迹延伸一定距离,这代表了车辆的实际感知能力。该算法采用空间连接和减法等地理集合运算,计算出每条公交线路的唯一贡献。我们使用美国曼哈顿的真实公交车轨迹来评估该方法,并将其与随机基线和先前的工作进行比较。结果表明,在给定公交线路的情况下,使用一个最大2跳校准路径的参考站可以实现完整的传感覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile Calibration for Bus-Based Urban Sensing
In bus-based sensing, public transport serves as a mobile urban sensing platform. While offering much higher geographical coverage, the low-cost sensors mounted on vehicles can be less accurate and demand more frequent calibration, which may be challenging for large vehicle fleets. As calibration is performed by relating mobile sensor readings to those of fixed reference stations, the placement of reference stations is very important. In this work, we propose an algorithm for computing the optimal locations for reference stations to maximize the sensing coverage. Contrary to prior work, coverage is defined in terms of geographical area, extending a certain distance away from the route trajectory, which represents the actual sensing capacity of the vehicles. The proposed algorithm computes it using geographical set operations, such as spatial join and subtraction to compute the unique contribution of each bus route. We evaluate the approach using real bus trajectories from Manhattan, USA, and compare it with a random baseline and prior work. The results indicate that given the bus routes, a complete sensing coverage can be achieved using a single reference station with a maximum 2-hop calibration path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信